Sub-Riemannian geodesics on the multidimensional Heisenberg group
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the structure of truncated connections on the multidimensional Heisenberg group endowed with a left-invariant sub-Riemannian structure. We find that sub-Riemannian geodesics are parabolas whose orthogonal projections onto the corresponding contact planes are straight lines. In addition to such parabolas, some straight lines lying in contact planes are also geodesics.
Keywords: Heisenberg group, sub-Riemannian structure, left-invariant contact metric structure, geodesic.
@article{INTO_2020_180_a10,
     author = {V. I. Panzhenskii and O. P. Surina},
     title = {Sub-Riemannian geodesics on the multidimensional {Heisenberg} group},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a10/}
}
TY  - JOUR
AU  - V. I. Panzhenskii
AU  - O. P. Surina
TI  - Sub-Riemannian geodesics on the multidimensional Heisenberg group
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 74
EP  - 84
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a10/
LA  - ru
ID  - INTO_2020_180_a10
ER  - 
%0 Journal Article
%A V. I. Panzhenskii
%A O. P. Surina
%T Sub-Riemannian geodesics on the multidimensional Heisenberg group
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 74-84
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a10/
%G ru
%F INTO_2020_180_a10
V. I. Panzhenskii; O. P. Surina. Sub-Riemannian geodesics on the multidimensional Heisenberg group. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 74-84. http://geodesic.mathdoc.fr/item/INTO_2020_180_a10/

[5] Agrachev A. A., “Nekotorye voprosy subrimanovoi geometrii”, Usp. mat. nauk., 71:6 (432) (2016), 3–36 | MR | Zbl

[6] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn. Sovr. probl. mat. Fundam. napr., 16 (1987), 5–85 | Zbl

[7] Vershik A. M., Fadeev L. D., “Lagranzheva mekhanika v invariantnom izlozhenii”, Problemy teoreticheskoi fiziki, Izd-vo LGU, L., 1975, 129–141

[8] Gorbatsevich V. V., “Subrimanovy geometrii na kompaktnykh odnorodnykh prostranstvakh”, Izv. RAN. Ser. mat., 78:3 (2014), 35–52 | MR | Zbl

[9] Gromol D., Klingenberg V., Maier V., Rimanova geometriya v tselom, Mir, M., 1971

[10] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Pechatnyi Dom, Odessa, 2013

[11] Panzhenskii V. I., Klimova T. R., “Kontaktnaya metricheskaya svyaznost na gruppe Geizenberga”, Izv. vuzov. Mat., 11 (2018), 51–59 | Zbl

[12] Sachkov Yu. L., “Teoriya upravleniya na gruppakh Li”, Sovr. mat. Fundam. napr., 26 (2008), 5–59

[13] Agrachev A., Barilari D., Boscain U., Introduction to Riemannian and sub-Riemannian geometry, SISSA, Trieste, 2012 | MR

[14] Blair D. E., Contact Manifolds in Riemannian geometry, Lect. Notes Math., 509, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[15] Boyer C. P., The Sasakian Geometry of the Heisenberg Group, Albuquerque, 2009 | MR | Zbl

[16] Tanno S., “The automorphism groups of almost contact Riemannian manifolds”, Tôhoku Math. J., 21:2 (1969), 21–38 | DOI | MR | Zbl