On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 9-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the differential geometry of $\rho$-dimensional complexes $C^\rho$ of $m$-dimensional planes in the projective space $P^n$ containing a finite number of torses. We find a necessary condition under which the complex $C^\rho$ contains a finite number of torses. We clarify the structure of $\rho$-dimensional complexes $C^\rho$ for which all torses belonging to the complex $C^\rho$ have one common characteristic $(m+1)$-dimensional plane that touches the torse along an $m$-dimensional generator. Such complexes are denoted by $C^\rho(1)$. Also, we determine the image of complexes $C^\rho(1)$ in the $(m+1)(n-m)$-dimensional algebraic variety $\Omega(m,n)$ of the space $P^N$, where $N=\binom{m+1}{n+1}-1$, which is the image of the manifold $G(m,n)$ of $m$-dimensional planes of the projective space $P^n$ under the Grassmann mappping.
Keywords: Grassmannian, complex of multidimensional planes, Segre manifold.
@article{INTO_2020_180_a1,
     author = {I. V. Bubyakin},
     title = {On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {9--16},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a1/}
}
TY  - JOUR
AU  - I. V. Bubyakin
TI  - On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 9
EP  - 16
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a1/
LA  - ru
ID  - INTO_2020_180_a1
ER  - 
%0 Journal Article
%A I. V. Bubyakin
%T On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 9-16
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a1/
%G ru
%F INTO_2020_180_a1
I. V. Bubyakin. On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 9-16. http://geodesic.mathdoc.fr/item/INTO_2020_180_a1/

[1] Akivis M. A., “Tkani i pochti grassmanovy struktury”, Sib. mat. zh., 23:6 (1982), 6–15 | MR | Zbl

[2] Akivis M. A., Goldberg V. V., “Mnogoobraziya s vyrozhdennym gaussovym otobrazheniem s kratnymi fokusami i skruchennye konusy”, Izv. vuzov. Mat., 2003, no. 11, 3–14 | Zbl

[3] Arnold V. I., “Kompleksnyi lagranzhev grassmanian”, Funkts. anal. prilozh., 34:3 (2000), 63–65 | MR | Zbl

[4] Arnold V. I., “Lagranzhev grassmanian kvaternionnogo gipersimplekticheskogo prostranstva”, Funkts. anal. prilozh., 35:1 (2001), 74–77 | MR | Zbl

[5] Bubyakin I. V., Geometriya pyatimernykh kompleksov dvumernykh ploskostei, Nauka, Novosibirsk, 2001

[6] Bubyakin I. V., “O stroenii kompleksov $m$-mernykh ploskostei proektivnogo prostranstva, soderzhaschikh konechnoe chislo torsov”, Mat. zametki SVFU., 24:4 (2017), 3–16 | Zbl

[7] Gelfand I. M., Gindikin S. G., Graev M. I., Izbrannye zadachi integralnoi geometrii, Dobrosvet, M., 2007 | MR

[8] Makokha A. N., “Geometricheskaya konstruktsiya lineinogo kompleksa ploskostei $B_{3}$”, Izv. vuzov. Mat., 2018, no. 11, 15–26 | MR | Zbl

[9] Stegantseva P. G., Grechneva M. A., “Grassmanov obraz neizotropnoi poverkhnosti psevdoevklidova prostranstva”, Izv. vuzov. Mat., 2017, no. 2, 65–75 | MR | Zbl

[10] Akivis M. A., “On the differential geometry of a Grassmann manifold”, Tensor., 38 (1982), 273–282 | MR | Zbl

[11] Akivis M. A., Goldberg V. V., Projective Differential Geometry of Submanifolds, North-Holland, Amsterdam, 1993 | MR | Zbl

[12] Arkani-Hamed N., Bourjaily J. L., Cachazo F., Goncharov A. B., Postnikov A., Trnka J., Scattering Amplitudes and the Positive Grassmannian, 2012, arXiv: 1212.5605 [hep-th] | MR

[13] Arkani-Hamed N., Trnka J., “The Amplituhedron”, J. High Energy Phys., 2014, no. 10, 1–35

[14] Landsberg J. M., Algebraic Geometry and Projective Differential Geometry, 1998, arXiv: math/9809184 [math.AG] | MR | Zbl

[15] Room T. G., The Geometry of Determinantal Loci, Cambridge, 1938