Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_180_a1, author = {I. V. Bubyakin}, title = {On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {9--16}, publisher = {mathdoc}, volume = {180}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a1/} }
TY - JOUR AU - I. V. Bubyakin TI - On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 9 EP - 16 VL - 180 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_180_a1/ LA - ru ID - INTO_2020_180_a1 ER -
%0 Journal Article %A I. V. Bubyakin %T On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 9-16 %V 180 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_180_a1/ %G ru %F INTO_2020_180_a1
I. V. Bubyakin. On the structure of some complexes of $m$-dimensional planes of the projective space $P^n$ containing a finite number of torses. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 9-16. http://geodesic.mathdoc.fr/item/INTO_2020_180_a1/