Steiner subratio of Riemannian manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 67-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Steiner subratio is one of the Steiner-type relations that show how much the weights of optimal connecting graphs in a metric space can differ. In this paper, an upper estimate for the Steiner subratio of Riemannian manifolds is obtained.
Keywords: minimal Steiner net, minimal filling, Steiner subratio.
@article{INTO_2020_179_a9,
     author = {E. I. Stepanova},
     title = {Steiner subratio of {Riemannian} manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {179},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a9/}
}
TY  - JOUR
AU  - E. I. Stepanova
TI  - Steiner subratio of Riemannian manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 67
EP  - 72
VL  - 179
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_179_a9/
LA  - ru
ID  - INTO_2020_179_a9
ER  - 
%0 Journal Article
%A E. I. Stepanova
%T Steiner subratio of Riemannian manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 67-72
%V 179
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_179_a9/
%G ru
%F INTO_2020_179_a9
E. I. Stepanova. Steiner subratio of Riemannian manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 67-72. http://geodesic.mathdoc.fr/item/INTO_2020_179_a9/

[1] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR

[2] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | MR | Zbl

[3] Ivanov A. O., Tuzhilin A. A., Tsislik D., “Otnoshenie Shteinera dlya mnogoobrazii”, Mat. zametki., 74:3 (2003), 387–395 | MR | Zbl

[4] Mischenko V. A., “Otsenki otnosheniya Shteinera—Gromova rimanovykh mnogoobrazii”, Fundam. prikl. mat., 18:2 (2013), 119–124

[5] Ovsyannikov Z. N., “Subotnoshenie Shteinera dlya pyati tochek na ploskosti i chetyrekh tochek v prostranstve”, Fundam. prikl. mat., 18:2 (2013), 167–179

[6] Stepanova E. I., “Bifurkatsii minimalnykh derevev Shteinera i minimalnykh zapolnenii dlya nevypuklykh chetyrekhtochechnykh granits i subotnoshenie Shteinera evklidovoi ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2016, no. 2, 48–51 | Zbl

[7] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl

[8] Gromov M., “Filling Riemannian manifolds”, J. Differ. Geom., 18:1 (1983), 1–147 | DOI | MR | Zbl

[9] Ivanov A. O., Tuzhilin A. A., “The Steiner ratio Gilbert—Pollak conjecture is still open”, Algorithmica., 62:1 (2012), 630–632 | DOI | MR | Zbl