On $q$-ary periodic sequences
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 34-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of estimating the possible number of periods and the length of the periodic part of an irrational number depending on its measure of irrationality $\beta$. We state that the expansion of the fractional part of an irrational number $\alpha$ cannot start from the nonperiodic part of length $(1-\delta)N$ and end with the periodic part of the length $\delta N$, regardless of the numeral system.
Keywords: measure of irrationality
Mots-clés : $q$-ary decomposition.
@article{INTO_2020_179_a4,
     author = {A. H. Munos Vaskes},
     title = {On $q$-ary periodic sequences},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {34--36},
     year = {2020},
     volume = {179},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a4/}
}
TY  - JOUR
AU  - A. H. Munos Vaskes
TI  - On $q$-ary periodic sequences
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 34
EP  - 36
VL  - 179
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_179_a4/
LA  - ru
ID  - INTO_2020_179_a4
ER  - 
%0 Journal Article
%A A. H. Munos Vaskes
%T On $q$-ary periodic sequences
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 34-36
%V 179
%U http://geodesic.mathdoc.fr/item/INTO_2020_179_a4/
%G ru
%F INTO_2020_179_a4
A. H. Munos Vaskes. On $q$-ary periodic sequences. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 34-36. http://geodesic.mathdoc.fr/item/INTO_2020_179_a4/

[1] Bukhshtab A. A., Teoriya chisel, Lan, SPb., 2008

[2] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Dokl. RAN., 459:6 (2014), 677–679 | Zbl

[3] Chirskii V. G., “O preobrazovaniyakh periodicheskikh posledovatelnostei”, Chebyshev. sb., 17:3, 180–185 yr 2016 | MR

[4] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Izv. RAN. Ser. mat., 81:2 (2017), 215–232 | MR | Zbl

[5] Chirskii V. G., “Periodicheskie i neperiodicheskie konechnye posledovatelnosti”, Chebyshev. sb., 18:2 (2017), 275–278 | MR | Zbl

[6] Chirskii V. G., “Predstavlenie naturalnykh chisel slagaemymi opredelennogo vida”, Sovr. probl. mat., 2017, no. 24, 81–84 | Zbl

[7] Chirskii V. G., Nesterenko A. Yu., “Ob odnom podkhode k preobrazovaniyu periodicheskikh posledovatelnostei”, Diskr. mat., 27:4 (2015), 150–157

[8] Chirskii V. G., “Topical problems of the theory of transcendental numbers: Developments of approaches to tyeir solutions in works of Yu. V. Nesterenko”, Russ. J. Math. Phys., 24:2 (2017), 153–171 | DOI | MR | Zbl