On $q$-ary periodic sequences
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 34-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of estimating the possible number of periods and the length of the periodic part of an irrational number depending on its measure of irrationality $\beta$. We state that the expansion of the fractional part of an irrational number $\alpha$ cannot start from the nonperiodic part of length $(1-\delta)N$ and end with the periodic part of the length $\delta N$, regardless of the numeral system.
Keywords: measure of irrationality
Mots-clés : $q$-ary decomposition.
@article{INTO_2020_179_a4,
     author = {A. H. Munos Vaskes},
     title = {On $q$-ary periodic sequences},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {34--36},
     publisher = {mathdoc},
     volume = {179},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a4/}
}
TY  - JOUR
AU  - A. H. Munos Vaskes
TI  - On $q$-ary periodic sequences
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 34
EP  - 36
VL  - 179
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_179_a4/
LA  - ru
ID  - INTO_2020_179_a4
ER  - 
%0 Journal Article
%A A. H. Munos Vaskes
%T On $q$-ary periodic sequences
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 34-36
%V 179
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_179_a4/
%G ru
%F INTO_2020_179_a4
A. H. Munos Vaskes. On $q$-ary periodic sequences. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 34-36. http://geodesic.mathdoc.fr/item/INTO_2020_179_a4/

[1] Bukhshtab A. A., Teoriya chisel, Lan, SPb., 2008

[2] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Dokl. RAN., 459:6 (2014), 677–679 | Zbl

[3] Chirskii V. G., “O preobrazovaniyakh periodicheskikh posledovatelnostei”, Chebyshev. sb., 17:3, 180–185 yr 2016 | MR

[4] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Izv. RAN. Ser. mat., 81:2 (2017), 215–232 | MR | Zbl

[5] Chirskii V. G., “Periodicheskie i neperiodicheskie konechnye posledovatelnosti”, Chebyshev. sb., 18:2 (2017), 275–278 | MR | Zbl

[6] Chirskii V. G., “Predstavlenie naturalnykh chisel slagaemymi opredelennogo vida”, Sovr. probl. mat., 2017, no. 24, 81–84 | Zbl

[7] Chirskii V. G., Nesterenko A. Yu., “Ob odnom podkhode k preobrazovaniyu periodicheskikh posledovatelnostei”, Diskr. mat., 27:4 (2015), 150–157

[8] Chirskii V. G., “Topical problems of the theory of transcendental numbers: Developments of approaches to tyeir solutions in works of Yu. V. Nesterenko”, Russ. J. Math. Phys., 24:2 (2017), 153–171 | DOI | MR | Zbl