Infinite algebraic independence of some almost polyadic numbers
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 29-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss some problems of infinite algebraic independence of polyadic and almost polyadic numbers.
Keywords: polyadic number, almost polyadic number, infinite algebraic independence.
@article{INTO_2020_179_a3,
     author = {V. Yu. Matveev},
     title = {Infinite algebraic independence of some almost polyadic numbers},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {29--33},
     publisher = {mathdoc},
     volume = {179},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a3/}
}
TY  - JOUR
AU  - V. Yu. Matveev
TI  - Infinite algebraic independence of some almost polyadic numbers
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 29
EP  - 33
VL  - 179
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_179_a3/
LA  - ru
ID  - INTO_2020_179_a3
ER  - 
%0 Journal Article
%A V. Yu. Matveev
%T Infinite algebraic independence of some almost polyadic numbers
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 29-33
%V 179
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_179_a3/
%G ru
%F INTO_2020_179_a3
V. Yu. Matveev. Infinite algebraic independence of some almost polyadic numbers. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 29-33. http://geodesic.mathdoc.fr/item/INTO_2020_179_a3/

[1] Matveev V. Yu., Chirskii V. G., “O nekotorykh svoistvakh poliadicheskikh razlozhenii”, Chebyshev. sb., 14:2 (2013), 164–172 | Zbl

[2] Matveev V. Yu., “Algebraicheskaya nezavisimost nekotorykh pochti poliadicheskikh ryadov”, Chebyshev. sb., 17:3 (2016), 166–177 | MR | Zbl

[3] Postnikov A. G., Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971 | MR

[4] Salikhov V. Kh., “Ob algebraicheskoi nezavisimosti znachenii $E$-funktsii, udovletvoryayuschikh lineinym differentsialnym uravneniyam pervogo poryadka”, Mat. zametki., 13:1 (1973), 29–40

[5] Fomin A. A., Chislovye koltsa i moduli nad nimi, Prometei, Moskva, 2013

[6] Chirskii V. G., “O ryadakh, algebraicheski nezavisimykh vo vsekh lokalnykh polyakh”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1978, no. 3, 29–34 | Zbl

[7] Chirskii V. G., “O globalnykh sootnosheniyakh”, Mat. zametki., 48:2 (1990), 123–127 | MR | Zbl

[8] Chirskii V. G., “Ob algebraicheskikh sootnosheniyakh v nearkhimedovski normirovannykh polyakh”, Funkts. anal. prilozh., 26:2 (1992), 41–50 | MR | Zbl

[9] Chirskii V. G., “Metod Zigelya v $p$-adicheskoi oblasti”, Fundam. prikl. mat., 11:6 (2005), 221–230

[10] Chirskii V. G., “Obobschenie ponyatiya globalnogo sootnosheniya”, Zap. nauch. semin. POMI., 322 (2005), 220–238 | Zbl

[11] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Dokl. RAN., 459:6 (2014), 677–679 | Zbl

[12] Chirskii V. G., “Ob arifmeticheskikh svoistvakh obobschennykh gipergeometricheskikh ryadov s irratsionalnymi parametrami”, Izv. RAN. Ser. mat., 78:6 (2014), 193–210 | MR | Zbl

[13] Chirskii V. G., “Arifmeticheskie svoistva tselykh poliadicheskikh chisel”, Chebyshev. sb., 16:1 (2015), 254–264 | MR | Zbl

[14] Chirskii V. G., “Ob arifmeticheskikh svoistvakh ryada Eilera”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2015, no. 1, 59–61 | Zbl

[15] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Izv. RAN. Ser. mat., 81:2 (2017), 215–232 | MR | Zbl

[16] Chirskii V. G., “Arifmeticheskie svoistva obobschennykh gipergeometricheskikh $F$-ryadov”, Dokl. RAN., 483:3 (2018), 252–254 | Zbl

[17] Chirskii V. G., Matveev V. Yu., “O predstavlenii naturalnykh chisel”, Chebyshev. sb., 14:1 (2013), 75–86 | MR

[18] Chirskii V. G., Matveev V. Yu., “O nekotorykh svoistvakh poliadicheskikh razlozhenii”, Chebyshev. sb., 14:2 (46) (2013), 164–172 | Zbl

[19] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[20] Bertrand D., Chiskii V., Yebbou J., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse., 13:2 (2004), 241–260 | DOI | MR | Zbl

[21] Chirskii V. G., “Topical problems of the theory of transcendental numbers: Developments of approaches to tyeir solutions in works of Yu. V. Nesterenko”, Russ. J. Math. Phys., 24:2 (2017), 153–171 | DOI | MR | Zbl