Infinite linear independence of values of generalized hypergeometric series with irrational parameters at polyadic points
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 88-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the proof of infinite linear independence at points that admit high-order approximations by algebraic numbers in non-Archimedean normalized fields.
Keywords: hypergeometric series, irrational parameter.
@article{INTO_2020_179_a13,
     author = {E. Yu. Yudenkova},
     title = {Infinite linear independence of values of generalized hypergeometric series with irrational parameters at polyadic points},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {88--93},
     publisher = {mathdoc},
     volume = {179},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a13/}
}
TY  - JOUR
AU  - E. Yu. Yudenkova
TI  - Infinite linear independence of values of generalized hypergeometric series with irrational parameters at polyadic points
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 88
EP  - 93
VL  - 179
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_179_a13/
LA  - ru
ID  - INTO_2020_179_a13
ER  - 
%0 Journal Article
%A E. Yu. Yudenkova
%T Infinite linear independence of values of generalized hypergeometric series with irrational parameters at polyadic points
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 88-93
%V 179
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_179_a13/
%G ru
%F INTO_2020_179_a13
E. Yu. Yudenkova. Infinite linear independence of values of generalized hypergeometric series with irrational parameters at polyadic points. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 88-93. http://geodesic.mathdoc.fr/item/INTO_2020_179_a13/

[1] Nesterenko Yu. V., “Priblizheniya Ermita—Pade obobschennykh gipergeometricheskikh funktsii”, Mat. sb., 185:3 (1994), 39–72 | Zbl

[2] Chirskii V. G., “O globalnykh sootnosheniyakh”, Mat. zametki., 48:2 (1990), 123–127 | MR | Zbl

[3] Chirskii V. G., “Ob algebraicheskikh sootnosheniyakh v nearkhimedovski normirovannykh polyakh”, Funkts. anal. prilozh., 26:2 (1992), 41–50 | MR | Zbl

[4] Chirskii V. G., “Ob arifmeticheskikh svoistvakh obobschennykh gipergeometricheskikh ryadov s irratsionalnymi parametrami”, Izv. RAN. Ser. mat., 78:6 (2014), 193–210 | MR | Zbl

[5] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Dokl. RAN., 459:6 (2014), 677–679 | Zbl

[6] Chirskii V. G., “Ob arifmeticheskikh svoistvakh ryada Eilera”, Vestn. Mos. Un-ta. Ser. 1. Mat. Mekh., 2015, no. 1, 59–61 | Zbl

[7] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Izv. RAN. Ser. mat., 81:2 (2017), 215–232 | MR | Zbl

[8] Chirskii V. G., “Arifmeticheskie svoistva obobschennykh gipergeometricheskikh $F$-ryadov”, Dokl. RAN., 483:3 (2018), 252–254 | Zbl

[9] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[10] Bertrand D., Chiskii V., Yebbou J., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse., 13:2 (2004), 241–260 | DOI | MR | Zbl

[11] Chirskii V. G., “Topical problems of the theory of transcendental numbers: Developments of approaches to tyeir solutions in works of Yu. V. Nesterenko”, Russ. J. Math. Phys., 24:2 (2017), 153–171 | DOI | MR | Zbl