On the Сesàro convergence of numerical series
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 78-80
Cet article a éte moissonné depuis la source Math-Net.Ru
The transition from a given series to the series of averaged sums of its terms is called the Cesàro procedure. In this paper, we construct a series for which $n$-multiple application of the Cesàro procedure gives divergent series whereas the $(n+1)$-multiple leads to a convergent series.
Keywords:
series
Mots-clés : convergence, Cesàro convergence.
Mots-clés : convergence, Cesàro convergence.
@article{INTO_2020_179_a11,
author = {V. V. Timoshenko},
title = {On the {{\CYRS}es\`aro} convergence of numerical series},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {78--80},
year = {2020},
volume = {179},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a11/}
}
V. V. Timoshenko. On the Сesàro convergence of numerical series. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 78-80. http://geodesic.mathdoc.fr/item/INTO_2020_179_a11/
[1] Khardi G., Raskhodyaschiesya ryady, IL, M., 1951