On proofs of properties of semirecursive sets
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 73-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present proofs of properties of semirecursive sets based directly on the definition of these sets and on the recursiveness of Kleene predicates. These proofs are shorter and clearer than traditional proofs of similar statements for recursively enumerable sets.
Keywords: semirecursive set, semicharacteristic function, recursively enumerable set, partially recursive function, recursive function, Kleene predicate.
@article{INTO_2020_179_a10,
     author = {I. L. Timofeeva},
     title = {On proofs of properties of semirecursive sets},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {73--77},
     publisher = {mathdoc},
     volume = {179},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_179_a10/}
}
TY  - JOUR
AU  - I. L. Timofeeva
TI  - On proofs of properties of semirecursive sets
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 73
EP  - 77
VL  - 179
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_179_a10/
LA  - ru
ID  - INTO_2020_179_a10
ER  - 
%0 Journal Article
%A I. L. Timofeeva
%T On proofs of properties of semirecursive sets
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 73-77
%V 179
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_179_a10/
%G ru
%F INTO_2020_179_a10
I. L. Timofeeva. On proofs of properties of semirecursive sets. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 1, Tome 179 (2020), pp. 73-77. http://geodesic.mathdoc.fr/item/INTO_2020_179_a10/

[1] Katlend N., Vychislimost. Vvedenie v teoriyu rekursivnykh funktsii, Mir, M., 1983

[2] Klini S., Vvedenie v metamatematiku, IL, M., 1957 | MR

[3] Maltsev A. I., Algoritmy i rekursivnye funktsii, Nauka, M., 1986 | MR

[4] Rodzhers Kh., Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972