Application of the maximum principle to minimizing total production costs
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 150-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are no common methods of the search for optimal solutions to problems of economic dynamics. Application of variational methods is possible for a quite narrow class of problems. In this paper, we discuss application of the Pontryagin maximum principle, which significantly expands the class of problems considered and allows one to obtain numerical solutions.
Mots-clés : calculus of variation
Keywords: optimal control, Pontryagin maximum principle, economic dynamics.
@article{INTO_2020_178_a10,
     author = {V. V. Kiselev},
     title = {Application of the maximum principle to minimizing total production costs},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {150--153},
     publisher = {mathdoc},
     volume = {178},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_178_a10/}
}
TY  - JOUR
AU  - V. V. Kiselev
TI  - Application of the maximum principle to minimizing total production costs
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 150
EP  - 153
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_178_a10/
LA  - ru
ID  - INTO_2020_178_a10
ER  - 
%0 Journal Article
%A V. V. Kiselev
%T Application of the maximum principle to minimizing total production costs
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 150-153
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_178_a10/
%G ru
%F INTO_2020_178_a10
V. V. Kiselev. Application of the maximum principle to minimizing total production costs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Optimal control, Tome 178 (2020), pp. 150-153. http://geodesic.mathdoc.fr/item/INTO_2020_178_a10/

[1] Vanko V. I., Ermoshina O. V., Kuvyrkin G. N., Variatsionnoe ischislenie i optimalnoe upravlenie, Izd-vo MGTU im. N. E. Baumana, M., 2018

[2] Goncharenko V. M., Popov V. Yu. (red.)., Matematicheskie metody v ekonomike i finansakh, KNORUS, M., 2016

[3] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, AIRISPRESS, M., 2002

[4] Kantorovich L. V., Ekonomicheskii raschet optimalnogo ispolzovaniya resursov, Izd-vo AN SSSR, M., 1960

[5] Kantorovich L. V., Matematicheskie metody organizatsii i planirovaniya proizvodstva, Izd-vo LGU, L., 1939

[6] Kantorovich L. V. , Optimalnye resheniya v ekonomike, Nauka, M., 1972 | MR

[7] Lagosha B. A., Apalkova T. G., Optimalnoe upravlenie v ekonomike, Finansy i statistika, M., 2008

[8] Lange O., Optimalnye resheniya, Nauka, M., 1967

[9] Takha Kh. A., Vvedenie v issledovanie operatsii, Vilyams, M., 2005