Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_177_a6, author = {O. Givradze}, title = {Irreducible generating sets of complete semigroups of unions $B_X(S)$ defined by semilattices of the class $\Sigma_1(X,4)$}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {69--73}, publisher = {mathdoc}, volume = {177}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a6/} }
TY - JOUR AU - O. Givradze TI - Irreducible generating sets of complete semigroups of unions $B_X(S)$ defined by semilattices of the class $\Sigma_1(X,4)$ JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 69 EP - 73 VL - 177 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_177_a6/ LA - ru ID - INTO_2020_177_a6 ER -
%0 Journal Article %A O. Givradze %T Irreducible generating sets of complete semigroups of unions $B_X(S)$ defined by semilattices of the class $\Sigma_1(X,4)$ %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 69-73 %V 177 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_177_a6/ %G ru %F INTO_2020_177_a6
O. Givradze. Irreducible generating sets of complete semigroups of unions $B_X(S)$ defined by semilattices of the class $\Sigma_1(X,4)$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 69-73. http://geodesic.mathdoc.fr/item/INTO_2020_177_a6/
[1] Givradze O., “Irreducible generating sets of complete semigroups of unions $B_X(D)$ defined by semilattices of the class $\Sigma_2(X,4)$”, J. Math. Sci. (N.Y.)., 186:5 (2012), 745–750 | DOI | MR | Zbl
[2] Givradze O., “The number of equivalences on a finite set”, Proc. A. Razmadze Math. Inst., 131 (2003), 121–122 | Zbl