Enumeration of labeled series-parallel tricyclic graphs
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 132-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

A series-parallel graph is a graph that does not contain a complete graph with four vertices as a minor. An explicit formula for the number of labeled series-parallel tricyclic graphs with a given number of vertices is obtained, and the corresponding asymptotics for the number of such graphs with a large number of vertices is found. We prove that under a uniform probability distribution, the probability that the labeled tricyclic graph is a series-parallel graph is asymptotically equal to $13/15$.
Keywords: enumeration, labeled graph, series-parallel graph, asymptotics, probability.
@article{INTO_2020_177_a14,
     author = {V. A. Voblyi},
     title = {Enumeration of labeled series-parallel tricyclic graphs},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {132--136},
     publisher = {mathdoc},
     volume = {177},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a14/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - Enumeration of labeled series-parallel tricyclic graphs
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 132
EP  - 136
VL  - 177
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_177_a14/
LA  - ru
ID  - INTO_2020_177_a14
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T Enumeration of labeled series-parallel tricyclic graphs
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 132-136
%V 177
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_177_a14/
%G ru
%F INTO_2020_177_a14
V. A. Voblyi. Enumeration of labeled series-parallel tricyclic graphs. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 132-136. http://geodesic.mathdoc.fr/item/INTO_2020_177_a14/

[1] Voblyi V. A., “O perechislenii pomechennykh svyaznykh grafov s zadannymi chislami vershin i reber”, Diskr. anal. issl. oper., 23:2 (2016), 5–20 | MR | Zbl

[2] Voblyi V. A., Meleshko A. M., “O chisle pomechennykh posledovatelno-parallelnykh tritsiklicheskikh blokov”, XV Mezhdunar. konf. «Algebra, teoriya chisel i diskretnaya geometriya. Sovremennye problemy i prilozheniya» (Tula, 28-31 maya 2018 g.), Tula, TPGU, 168–170

[3] Voblyi V. A., “Chislo pomechennykh posledovatelno-parallelnykh tetratsiklicheskikh blokov”, Prikl. diskr. mat., 2020, no. 47, 57–61

[4] Voblyi V. A., “Vtoroe sootnoshenie Riddela i sledstviya iz nego”, Diskr. anal. issl. oper., 26:1, 20–32 | MR | Zbl

[5] Voblyi V. A., “Chislo pomechennykh vneshneplanarnykh grafov $k$-tsiklicheskikh grafov”, Mat. zametki., 103:5 (2018), 657–666 | MR | Zbl

[6] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[7] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR

[8] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 2, Nauka, M., 1983 | MR

[9] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 3, Nauka, M., 1986 | MR

[10] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, Eur. J. Combin., 28:8 (2007), 2091–2105 | DOI | MR | Zbl

[11] McDiarmid C., Scott A., “Random graphs from a block-stable class”, Eur. J. Combin., 58 (2016), 96–106 | DOI | MR | Zbl

[12] Radhavan S., “Low-connectivity network design on series-parallel graphs”, Networks., 43:3 (2004), 163–176 | DOI | MR

[13] Wright E. M., “The number of connected sparsely edged graphs”, J. Graph Theory., 1:4 (1977), 317–330 | DOI | MR | Zbl

[14] Wright E. M., “The number of connected sparsely edged graphs”, J. Graph Theory., 2:4 (1978), 299–305 | DOI | MR | Zbl