The lattice of fully invariant subgroups of a cotorsion hull
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 97-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider lattices of fully invariant subgroups of cotorsion hulls for various classes of separable primary abelian groups. Based on the results of A. Mader, A. I. Moskalenko, A. L. S. Corner, and R. S. Pierce, we examine these lattices in situations where the primary group is the direct sum of cyclic $p$-groups, the direct sum of torsion-complete groups, or an additive group of the primary group of ring endomorphisms is the direct sum of a group of small endomorphisms and a $p$-adic completion of the direct sum of infinite cyclic groups. The questions concerning the full transitivity of a cotorsion hull are discussed.
Keywords: separable $p$-group, full transitivity, lattice of fully invariant subgroups.
Mots-clés : cotorsion hull
@article{INTO_2020_177_a10,
     author = {T. G. Kemoklidze},
     title = {The lattice of fully invariant subgroups of a cotorsion hull},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {97--101},
     publisher = {mathdoc},
     volume = {177},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_177_a10/}
}
TY  - JOUR
AU  - T. G. Kemoklidze
TI  - The lattice of fully invariant subgroups of a cotorsion hull
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 97
EP  - 101
VL  - 177
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_177_a10/
LA  - ru
ID  - INTO_2020_177_a10
ER  - 
%0 Journal Article
%A T. G. Kemoklidze
%T The lattice of fully invariant subgroups of a cotorsion hull
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 97-101
%V 177
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_177_a10/
%G ru
%F INTO_2020_177_a10
T. G. Kemoklidze. The lattice of fully invariant subgroups of a cotorsion hull. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Algebra, Tome 177 (2020), pp. 97-101. http://geodesic.mathdoc.fr/item/INTO_2020_177_a10/

[1] Corner A. L. S., “On endomorphism rings of primary abelian groups”, Quart. J. Math. Oxford Ser. (2)., 20 (1969), 277–296 | DOI | MR | Zbl

[2] Fuchs L., Infinite Abelian Groups, v. 1, Academic Press, New York–London, 1970 | MR

[3] Fuchs L., Infinite Abelian Groups, v. 2, Academic Press, New York–London, 1973 | MR

[4] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity, and homomorphism groups of abelian groups”, J. Math. Sci. (N.Y.)., 128:3 (2005), 2894–2997 | DOI | MR | Zbl

[5] Kaplansky I., Infinite Abelian Groups, The University of Michigan Press, Ann Arbor, 1969 | MR | Zbl

[6] Kemoklidze T., “On the full transitivity of a cotorsion hull”, Georgian Math. J., 13:1 (2006), 79–84 | DOI | MR | Zbl

[7] Kemoklidze T., “The lattice of fully invariant subgroups of a cotorsion hull”, Georgian Math. J., 16:1 (2009), 89–104 | MR | Zbl

[8] Kemoklidze T., “On the full transitivity of a cotorsion hull”, Georgian Math. J., 26:1 (2019) | DOI | MR | Zbl

[9] Mader A., “The fully invariant subgroups of reduced algebraically compact groups”, Publ. Math. Debrecen., 17 (1970), 299–306 | MR

[10] May W., Toubassi E., “Endomorphisms of abelian groups and the theorem of Baer and Kaplansky”, J. Algebra., 43:1 (1976), 1–13 | DOI | MR | Zbl

[11] Moore J. D., Hewett l. J., “On fully invariant subgroups of Abelian $p$-groups”, Comment. Math. Univ. St. Paul., 20 (1971/72), 97–106 | MR

[12] Moskalenko A. I., “Cotorsion hull of a separable $p$-group”, Algebra and Logic., 28:2 (1989), 139–151 | DOI | MR | Zbl

[13] Pierce R. S., “Homomorphisms of primary abelian groups”, Topics in Abelian Groups, Scott, Foresman and Co., Chicago, 1963, 215–310 | MR