On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 121-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence and uniqueness theorems of the solution to the boundary-value problem for a parabolic-hyperbolic fractional-order equation with the gluing condition are proved.
Keywords: fractional derivative, loaded equation, differential equation, integral equation.
@article{INTO_2020_176_a10,
     author = {O. Kh. Abdullaev},
     title = {On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {176},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/}
}
TY  - JOUR
AU  - O. Kh. Abdullaev
TI  - On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 121
EP  - 128
VL  - 176
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/
LA  - ru
ID  - INTO_2020_176_a10
ER  - 
%0 Journal Article
%A O. Kh. Abdullaev
%T On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 121-128
%V 176
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/
%G ru
%F INTO_2020_176_a10
O. Kh. Abdullaev. On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 121-128. http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/