On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 121-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence and uniqueness theorems of the solution to the boundary-value problem for a parabolic-hyperbolic fractional-order equation with the gluing condition are proved.
Keywords: fractional derivative, loaded equation, differential equation, integral equation.
@article{INTO_2020_176_a10,
     author = {O. Kh. Abdullaev},
     title = {On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {176},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/}
}
TY  - JOUR
AU  - O. Kh. Abdullaev
TI  - On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 121
EP  - 128
VL  - 176
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/
LA  - ru
ID  - INTO_2020_176_a10
ER  - 
%0 Journal Article
%A O. Kh. Abdullaev
%T On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 121-128
%V 176
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/
%G ru
%F INTO_2020_176_a10
O. Kh. Abdullaev. On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 121-128. http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/

[1] Dzarakhokhov A. V., Eleev V. A., “Ob odnoi nelokalnoi kraevoi zadache dlya nagruzhennogo uravneniya tretego poryadka”, Vladikavkaz. mat. zh., 6:3, 36–46 | MR | Zbl

[2] Eleev V. A., “O nekotorykh kraevykh zadachakh dlya smeshanno-nagruzhennykh uravnenii vtorogo i tretego poryadka”, Differ. uravn., 30:2 (1994), 230–236 | MR

[3] Kaziev V. M., “Zadacha Gursa dlya odnogo nagruzhennogo integro-differentsialnogo uravneniya”, Differ. uravn., 17:2 (1981), 313–319 | MR | Zbl

[4] Lanin I. N., “Kraevaya zadacha dlya odnogo nagruzhennogo giperbolo-parabolicheskogo uravneniya tretego poryadka”, Differ. uravn., 17:1 (1981), 97–106 | MR | Zbl

[5] Nakhushev A. M., “Nagruzhennye uravneniya i ikh prilozheniya”, Differ. uravn., 19:1 (1983), 86–94 | MR | Zbl

[6] Nakhushev A. M., Drobnoe ischislenie i ego primeneniya, Fizmatlit, M., 2003

[7] Nakhushev A. M., Nagruzhennye uravneniya i ikh primeneniya, Nauka, M., 2012

[8] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[9] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN. Ser. mat., 73:2 (2009), 141–182 | DOI | MR | Zbl

[10] Ramazanov M. I., “O nelokalnoi zadache dlya nagruzhennogo giperbolo-ellipticheskogo uravneniya v pryamougolnoi oblasti”, Mat. zh. Almaty., 2:4 (2002), 75–81 | MR | Zbl

[11] Sabitov K. B. Nachalno-granichnaya zadacha dlya parabolo-giperbolicheskogo uravneniya s nagruzhennymi slagaemymi, Izv. vuzov. Mat., 2015, no. 6, 31–42 | Zbl

[12] Sabitov K. B., Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Mat., 2013, no. 7, 62–76 | Zbl

[13] Khubiev K. U. Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya smeshannogo giperbolo-parabolicheskogo tipa, Dokl. Adyg. (Cherkes. ) Mezhdunar. akad. nauk., 7:2 (2005), 74–77

[14] Abdullaev O. Kh., “About a problem for the degenerate mixed type equation involving Caputo and Erdélyi–Kober operators of fractional order”, Ukr. Mat. Zh., 71:6 (2019), 723–738 | DOI | MR | Zbl

[15] Abdullaev O. Kh., “Some problems for the degenerate mixed type equation involving Caputo and Atangana–Baleanu operators of fractional order”, Progr. Fract. Differ. Appl., 6:2 (2020), 101–114 | DOI

[16] Berdyshev A. S., Cabada A., Karimov E. T., “On a nonlocal boundary problem for a parabolic-hyperbolic equation involving a Riemann–Liouville fractional differential operator”, Nonlin. Anal. Theory Meth. Appl., 75:6 (2012), 3268–3273 | DOI | MR | Zbl

[17] Islomov B., Baltaeva U., “Boudanry-value problems for a third-order loaded parabolic-hyperbolic type equation with variable coefficients”, Electr. J. Differ. Equations., 2015:221 (2015), 1–10 | MR

[18] Kilbas A. A., Repin O. A., “An analog of the Bitsadze–Samarskii problem for a mixed type equation with a fractional derivative”, Differ. Equations., 39:5 (2003), 674–680 | DOI | MR | Zbl

[19] Kilbas A. A., Repin O. A., “An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative”, Fract. Calc. Appl. Anal., 13:1 (2010), 69–84 | MR | Zbl

[20] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[21] Kiryakova V., Generalized fractional calculus and applications, Wiley, New York, 1994 | MR | Zbl

[22] Podlubny I., Fractional differential equations, Academic Press, 1999 | MR | Zbl

[23] Sadarangani K., Abdullaev O. Kh., “A nonlocal problem with discontinuous matching condition for loaded mixed type equation involving the Caputo fractional derivative”, Adv. Differ. Equations., 2016, 241 | DOI | MR | Zbl