On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 121-128
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence and uniqueness theorems of the solution to the boundary-value problem for a parabolic-hyperbolic fractional-order equation with the gluing condition are proved.
Keywords:
fractional derivative, loaded equation, differential equation, integral equation.
@article{INTO_2020_176_a10,
author = {O. Kh. Abdullaev},
title = {On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {121--128},
publisher = {mathdoc},
volume = {176},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/}
}
TY - JOUR AU - O. Kh. Abdullaev TI - On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 121 EP - 128 VL - 176 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/ LA - ru ID - INTO_2020_176_a10 ER -
%0 Journal Article %A O. Kh. Abdullaev %T On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 121-128 %V 176 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/ %G ru %F INTO_2020_176_a10
O. Kh. Abdullaev. On a problem for a parabolic-hyperbolic equation with a nonlinear loaded part. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 2, Tome 176 (2020), pp. 121-128. http://geodesic.mathdoc.fr/item/INTO_2020_176_a10/