Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_175_a9, author = {A. S. Bondarev}, title = {Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {118--123}, publisher = {mathdoc}, volume = {175}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a9/} }
TY - JOUR AU - A. S. Bondarev TI - Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 118 EP - 123 VL - 175 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_175_a9/ LA - ru ID - INTO_2020_175_a9 ER -
%0 Journal Article %A A. S. Bondarev %T Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 118-123 %V 175 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_175_a9/ %G ru %F INTO_2020_175_a9
A. S. Bondarev. Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 118-123. http://geodesic.mathdoc.fr/item/INTO_2020_175_a9/
[1] Bondarev A. S., “Otsenki v silnykh normakh pogreshnosti proektsionno-raznostnogo metoda resheniya parabolicheskogo uravneniya s periodicheskim usloviem na reshenie”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2018, no. 2, 129–139 | Zbl
[2] Bondarev A. S., Smagin V. V., “Skhodimost proektsionno-raznostnogo metoda priblizhennogo resheniya parabolicheskogo uravneniya s periodicheskim usloviem na reshenie”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2014, no. 2, 81–94 | Zbl
[3] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uranvenii”, Differ. uravn., 11:7 (1975), 1269–1277 | MR | Zbl
[4] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[5] Marchuk V. I., Agoshkov G. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR
[6] Nguen Tyong Khuen, “Skhodimost proektsionno-raznostnogo metoda priblizhennogo resheniya parabolicheskogo uravneniya s integralnym usloviem na reshenie”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2011, no. 1, 202–208
[7] Oben Zh. P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977
[8] Petrova A. A., “Skhodimost proektsionno-raznostnogo metoda priblizhennogo resheniya parabolicheskogo uravneniya s vesovym integralnym usloviem na reshenie”, Differ. uravn., 54:7 (2018), 975–987 | DOI | MR | Zbl
[9] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Mat. sb., 188:3 (1997), 143–160 | DOI | MR
[10] Smagin V. V., “Srednekvadratichnye otsenki pogreshnosti proektsionno-raznostnogo metoda dlya parabolicheskikh uravnenii”, Zh. vychisl. mat. mat. fiz., 40:6 (2000), 908–919 | MR | Zbl
[11] Smagin V. V., “Proektsionno-raznostnye metody priblizhennogo resheniya parabolicheskikh uravnenii s nesimmetrichnymi operatorami”, Differ. uravn., 37:1 (2001), 115–123 | MR | Zbl
[12] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980