Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 118-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an approximate solution of an abstract linear parabolic equation in a separable Hilbert space with a periodic condition for a solution by the projection-difference method. We use the Galerkin method for the spatial variables and the implicit Euler discretization for time. We obtain root mean square estimates of the error of approximate solutions that are effective both in time and spatial variables; these estimates imply the convergence of approximate solutions to an exact solution and allow one to find the convergence rate.
Keywords: Hilbert space, periodic condition, projection-difference method, root mean square error estimate.
Mots-clés : parabolic equation
@article{INTO_2020_175_a9,
     author = {A. S. Bondarev},
     title = {Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {118--123},
     publisher = {mathdoc},
     volume = {175},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a9/}
}
TY  - JOUR
AU  - A. S. Bondarev
TI  - Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 118
EP  - 123
VL  - 175
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_175_a9/
LA  - ru
ID  - INTO_2020_175_a9
ER  - 
%0 Journal Article
%A A. S. Bondarev
%T Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 118-123
%V 175
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_175_a9/
%G ru
%F INTO_2020_175_a9
A. S. Bondarev. Root mean square error estimates for the projection-difference method for the approximate solution of a parabolic equation with a periodic condition for the solution. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 118-123. http://geodesic.mathdoc.fr/item/INTO_2020_175_a9/

[1] Bondarev A. S., “Otsenki v silnykh normakh pogreshnosti proektsionno-raznostnogo metoda resheniya parabolicheskogo uravneniya s periodicheskim usloviem na reshenie”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2018, no. 2, 129–139 | Zbl

[2] Bondarev A. S., Smagin V. V., “Skhodimost proektsionno-raznostnogo metoda priblizhennogo resheniya parabolicheskogo uravneniya s periodicheskim usloviem na reshenie”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2014, no. 2, 81–94 | Zbl

[3] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uranvenii”, Differ. uravn., 11:7 (1975), 1269–1277 | MR | Zbl

[4] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[5] Marchuk V. I., Agoshkov G. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[6] Nguen Tyong Khuen, “Skhodimost proektsionno-raznostnogo metoda priblizhennogo resheniya parabolicheskogo uravneniya s integralnym usloviem na reshenie”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2011, no. 1, 202–208

[7] Oben Zh. P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977

[8] Petrova A. A., “Skhodimost proektsionno-raznostnogo metoda priblizhennogo resheniya parabolicheskogo uravneniya s vesovym integralnym usloviem na reshenie”, Differ. uravn., 54:7 (2018), 975–987 | DOI | MR | Zbl

[9] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Mat. sb., 188:3 (1997), 143–160 | DOI | MR

[10] Smagin V. V., “Srednekvadratichnye otsenki pogreshnosti proektsionno-raznostnogo metoda dlya parabolicheskikh uravnenii”, Zh. vychisl. mat. mat. fiz., 40:6 (2000), 908–919 | MR | Zbl

[11] Smagin V. V., “Proektsionno-raznostnye metody priblizhennogo resheniya parabolicheskikh uravnenii s nesimmetrichnymi operatorami”, Differ. uravn., 37:1 (2001), 115–123 | MR | Zbl

[12] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980