On the search for parameters of a conformal mapping from a half-plane to a circular polygon
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 56-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of constructing a conformal mapping from a half-plane to a circular polygon is considered. The preimages of the vertices of the polygon and accessory parameters are determined by the generalized method of P. P. Kufarev for determining the parameters in the Christoffel–Schwarz integral. The method is based on the Loewner equation with boundary normalization. The problem of constructing a mapping from a half-plane onto the exterior of a polygon with a boundary consisting of straight-line segments is solved separately. Examples of mappings whose parameters are found by the Kufarev method are given.
Keywords: conformal mapping, circular polygon, Schwarz equation, Kufarev method.
@article{INTO_2020_175_a5,
     author = {I. A. Kolesnikov},
     title = {On the search for parameters of a conformal mapping from a half-plane to a circular polygon},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {56--68},
     publisher = {mathdoc},
     volume = {175},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a5/}
}
TY  - JOUR
AU  - I. A. Kolesnikov
TI  - On the search for parameters of a conformal mapping from a half-plane to a circular polygon
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 56
EP  - 68
VL  - 175
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_175_a5/
LA  - ru
ID  - INTO_2020_175_a5
ER  - 
%0 Journal Article
%A I. A. Kolesnikov
%T On the search for parameters of a conformal mapping from a half-plane to a circular polygon
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 56-68
%V 175
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_175_a5/
%G ru
%F INTO_2020_175_a5
I. A. Kolesnikov. On the search for parameters of a conformal mapping from a half-plane to a circular polygon. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 56-68. http://geodesic.mathdoc.fr/item/INTO_2020_175_a5/

[1] Aleksandrov I. A., Teoriya funktsii kompleksnogo peremennogo, Tomsk. gos. un-t, Tomsk, 2002

[2] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, Moskva, 1976

[3] Baibarin B. G., “Ob odnom chislennom sposobe opredeleniya parametrov proizvodnoi Shvartsa dlya funktsii, konformno otobrazhayuschei poluploskost na krugovye oblasti”, Tr. Tomsk. gos. un-ta., 189 (1966), 123–136 | MR

[4] Bereslavskii E. N., “Modelirovanie dvizheniya gruntovykh vod iz kotlovanov, ograzhdennykh shpuntami Zhukovskogo”, Vestn. S.-Peterb. un-ta. Ser. 10. Prikl. mat. Inform. Protsessy upravl., 13:2 (2017), 124-–137 | MR

[5] Bereslavskii E. N., “Ob integrirovanii v zamknutoi forme odnogo klassa fuksovykh uravnenii i ego prilozhenii”, Izv. vuzov. Mat., 1989, no. 9, 3–5 | MR

[6] Kolesnikov I. A., “Opredelenie aktsessornykh parametrov dlya otobrazheniya na schetnougolnik”, Vestn. Tomsk. gos. un-ta. Mat. mekh., 2014, no. 2 (28), 18–28

[7] Koppenfels V., Shtalman F., Praktika konformnykh otobrazhenii, IL, M., 1963

[8] Kufarev P. P., “Ob odnom metode chislennogo opredeleniya parametrov v integrale Kristoffelya—Shvartsa”, Dokl. AN SSSR., 57:6 (1947), 535–537 | MR | Zbl

[9] Nasyrov S. R., Geometricheskie problemy teorii razvetvlennykh nakrytii rimanovykh poverkhnostei, Magarif, Kazan, 2008

[10] Nasyrov S. R., Nizamieva L. Yu., “Opredelenie aktsessornykh parametrov v smeshannoi obratnoi kraevoi zadache s poligonalnoi izvestnoi chastyu granitsy”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 11:4 (2011), 34–40

[11] Nakipov N. N., Nasyrov S. R., “Parametricheskii metod nakhozhdeniya aktsessornykh parametrov v obobschennykh integralakh Kristoffelya––Shvartsa”, Uch. zap. Kazan. un-ta. Ser. Fiz.-mat. nauki., 158:2 (2016), 202–220 | MR

[12] Nepritvorennaya L. M., “Opredelenie neizvestnykh parametrov pri konformnom otobrazhenii verkhnei poluploskosti na proizvolnyi krugovoi chetyrekhugolnik”, Ukr. mat. zh., 23 (1971), 261–268 | Zbl

[13] Pomeranets M. V., Yakimov N. L., Reshenie zadach o dvizhenii depressionnykh krivykh v statsionarnoi postavnovke, Dep. v VINITI No 1366–B94, 1994

[14] Trudy P. P. Kufareva. K 100-letiyu so dnya rozhdeniya, ed. Aleksandrov I. A., Tomsk, 2009

[15] Tsitskishvili A. R., “O postroenii analiticheskikh funktsii, konformno otobrazhayuschikh poluploskost na krugovye mnogougolniki”, Differ. uravn., 21:4 (1985), 646–656 | MR

[16] Chibrikova L. I., “O kusochno golomorfnykh resheniyakh uravnenii klassa Fuksa”, Kraevye zadachi i ikh prilozheniya, Izd-vo Chuvashsk. un-ta, Cheboksary, 1986, 136–148 | MR

[17] Chistyakov Yu. V., Chislennyi metod opredeleniya funktsii, konformno otobrazhayuschei krug na mnogougolniki, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., Tomsk. gos. un-t im. V. V. Kuibysheva, Tomsk, 1953

[18] Gutlyanskii V. Ya., Zaidan A. O., “On conformal mapping of polygonal regions”, Ukr. Math. J., 45:11 (1993), 1669–1680 | DOI | MR | Zbl

[19] Hopkins T. R., Roberts D. E., “Kufarev's method for determination the Schwarz–-Christoffel parameters”, Numer. Math., 33:4 (1979), 353–365 | DOI | MR | Zbl

[20] Howison S. D., King J. R., “Explicit solutions to six free-boundary problems in fluid flow and diffusion”, IMA J. Appl. Math., 42:2 (1989), 155–175 | DOI | MR | Zbl

[21] Kolesnikov I. A., “On the problem of determining parameters in the Schwarz equation”, Probl. Anal. Issues Anal., 7 (25):2 (2018), 50–62 | DOI | MR | Zbl