Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_175_a4, author = {A. H. Galstyan}, title = {The {Fermat--Steiner} problem in the space of compact subsets of the {Euclidean} plane}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {44--55}, publisher = {mathdoc}, volume = {175}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_175_a4/} }
TY - JOUR AU - A. H. Galstyan TI - The Fermat--Steiner problem in the space of compact subsets of the Euclidean plane JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 44 EP - 55 VL - 175 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_175_a4/ LA - ru ID - INTO_2020_175_a4 ER -
%0 Journal Article %A A. H. Galstyan %T The Fermat--Steiner problem in the space of compact subsets of the Euclidean plane %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 44-55 %V 175 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_175_a4/ %G ru %F INTO_2020_175_a4
A. H. Galstyan. The Fermat--Steiner problem in the space of compact subsets of the Euclidean plane. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the XVII All-Russian Youth School-Conference «Lobachevsky Readings-2018», November 23-28, 2018, Kazan. Part 1, Tome 175 (2020), pp. 44-55. http://geodesic.mathdoc.fr/item/INTO_2020_175_a4/
[1] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t komp. issled., Moskva–Izhevsk, 2004
[2] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR
[3] Ivanov A. O., Nikolaeva N. K., Tuzhilin A. A., “Problema Shteinera v prostranstve Gromova—Khausdorfa: sluchai konechnykh metricheskikh prostranstv”, Tr. IMM UrO RAN., 23:4 (2017), 152–161
[4] Ivanov A. O., Tuzhilin A. A., Geometriya rasstoyanii Khausdorfa i Gromova—Khausdorfa: sluchai kompaktov, M., 2017
[5] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl
[6] Ivanov A. O., Tuzhilin A. A., Rasstoyanie Gromova—Khausdorfa, neprivodimye sootvetstviya, problema Shteinera i minimalnye zapolneniya, M., 2016
[7] Ivanov A., Iliadis S., Tuzhilin A., Realizations of Gromov–Hausdorff distance, arXiv: 1603.08850v1 | MR
[8] Ivanov A., Tropin A., Tuzhilin A., “Fermat–Steiner problem in the metric space of compact sets endowed with Hausdorff distance”, J. Geometry, 108:2 (2017), 575–590 | DOI | MR | Zbl
[9] Ivanov A., Tuzhilin A., Branching Solutions To One-Dimensional Variational Problems, World Scientific, Singapore, 2001 | MR | Zbl
[10] Schlicker S., The Geometry of the Hausdoff Metric, Grand Valley State University, Allendale, 2008