Motion of a rigid body with frontal cone in a resistive medium: Qualitative analysis and integrability
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 174 (2020), pp. 83-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model of the plane-parallel action of a medium on a rigid body whose surface contains a cone-shaped being part. A complete system of equations of motion under in the quasi-stationary case is presented. A new family of phase portraits on the phase cylinder of quasi-velocity is obtained. Also, we consider a mathematical model of the influence of the medium on an axisymmetric body whose surface contains a cone-shaped part. We examine the stability with respect to a part of variables of the key mode, namely, the spatial rectilinear translational deceleration of the body. The problem of integrability is discussed.
Keywords: rigid body, resistive medium, stability
Mots-clés : spatial motion, phase portrait.
@article{INTO_2020_174_a7,
     author = {M. V. Shamolin},
     title = {Motion of a rigid body with frontal cone in a resistive medium: {Qualitative} analysis and integrability},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {83--108},
     publisher = {mathdoc},
     volume = {174},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_174_a7/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Motion of a rigid body with frontal cone in a resistive medium: Qualitative analysis and integrability
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 83
EP  - 108
VL  - 174
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_174_a7/
LA  - ru
ID  - INTO_2020_174_a7
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Motion of a rigid body with frontal cone in a resistive medium: Qualitative analysis and integrability
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 83-108
%V 174
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_174_a7/
%G ru
%F INTO_2020_174_a7
M. V. Shamolin. Motion of a rigid body with frontal cone in a resistive medium: Qualitative analysis and integrability. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 174 (2020), pp. 83-108. http://geodesic.mathdoc.fr/item/INTO_2020_174_a7/

[1] Andreev A. V., Shamolin M. V., “Matematicheskoe modelirovanie vozdeistviya sredy na tverdoe telo i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. SamGU. Estestvennonauch. ser., 2014, no. 10 (121), 109–115 | Zbl

[2] Andreev A. V., Shamolin M. V., “Modelirovanie vozdeistviya sredy na telo konicheskoi formy i semeistva fazovykh portretov v prostranstve kvaziskorostei”, Prikl. mekh. tekhn. fiz., 56:4 (2015), 85–91 | Zbl

[3] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. AN SSSR., 14:5 (1937), 247–250

[4] Bivin Yu. K., “Izmenenie napravleniya dvizheniya tverdogo tela na granitse razdela sred”, Izv. AN SSSR. Mekh. tv. tela., 1981, no. 4, 105–109

[5] Bivin Yu. K., Viktorov V. V., Stepanov L. P., “Issledovanie dvizheniya tverdogo tela v glinistoi srede”, Izv. AN SSSR. Mekh. tv. tela., 1978, no. 2, 159–165

[6] Byushgens G. S., Studnev R. V., Dinamika prodolnogo i bokovogo dvizheniya, Mashinostroenie, M., 1969

[7] Byushgens G. S., Studnev R. V., Dinamika samoleta. Prostranstvennoe dvizhenie, Mashinostroenie, M., 1988

[8] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979

[9] Eroshin V. A., “Eksperimentalnoe issledovanie vkhoda uprugogo tsilindra v vodu s bolshoi skorostyu”, Izv. RAN. Mekh. zhidk. gaza., 1992, no. 5, 20–30

[10] Eroshin V. A., Privalov V. A., Samsonov V. A., “Dve modelnye zadachi o dvizhenii tela v soprotivlyayuscheisya srede”, Sb. nauchn.-metod. statei po teor. mekh., v. 18, Nauka, M., 1987, 75–78

[11] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izv. RAN. Mekh. zhidk. gaza., 1995, no. 3, 23–27

[12] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971

[13] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. mat. mekh., 79:3 (2015), 307–316 | Zbl

[14] Kuleshov A. S., Chernyakov G. A., “Issledovanie zadachi o dvizhenii tyazhelogo tela vrascheniya po absolyutno sherokhovatoi ploskosti s pomoschyu algoritma Kovachicha”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 145 (2018), 3–85

[15] Lokshin B. Ya., Privalov V. A., Samsonov V. A., Vvedenie v zadachu o dvizhenii tela v soprotivlyayuscheisya srede, MGU, M., 1986

[16] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.-L., 1947

[17] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Mat. mekh., 1989, no. 3, 51–54 | Zbl

[18] Sychev V. V., Ruban A. I., Sychev Vik. V., Korolev G. L., Asimptoticheskaya teoriya otryvnykh techenii, Nauka, M., 1987

[19] Tabachnikov V. G., “Statsionarnye kharakteristiki krylev na malykh skorostyakh vo vsem diapazone uglov ataki”, Tr. TsAGI., 1621 (1974), 18–24

[20] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[21] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[22] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[23] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987

[24] Shamolin M. V., “Primenenie metodov topograficheskikh sistem Puankare i sistem sravneniya v nekotorykh konkretnykh sistemakh differentsialnykh uravnenii”, Vesty. Mosk. un-ta. Ser. 1. Mat. Mekh., 1993, no. 2, 66–70 | Zbl

[25] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1993, no. 1, 68–71 | MR

[26] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Dokl. RAN., 337:5 (1994), 611–614 | Zbl

[27] Shamolin M. V., “Mnogoobrazie tipov fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Dokl. RAN., 349:2 (1996), 193–197 | MR | Zbl

[28] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk., 52:3 (1997), 177–178 | DOI | MR | Zbl

[29] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | DOI | MR | Zbl

[30] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 371:4 (2000), 480–483

[31] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN., 403:4 (2005), 482–485

[32] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007

[33] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[34] Shamolin M. V., “Trekhparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 418:1 (2008), 46–51 | DOI | MR | Zbl

[35] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN., 431:3 (2010), 339–343 | MR | Zbl

[36] Shamolin M. V., “Mnogoparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2011, no. 3, 24–30 | Zbl

[37] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN., 442:4 (2012), 479–481 | MR

[38] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231 | MR

[39] Shamolin M. V., “Modelirovanie dvizheniya tverdogo tela v soprotivlyayuscheisya srede i analogii s vikhrevymi dorozhkami”, Mat. model., 27:1 (2015), 33–53 | MR | Zbl

[40] Shamolin M. V., “K zadache o svobodnom tormozhenii tverdogo tela s perednim konusom v soprotivlyayuscheisya srede”, Mat. model., 28:9 (2016), 3–23 | Zbl

[41] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN., 475:5 (2017), 519–523 | MR

[42] Shamolin M. V., “Modelirovanie prostranstvennogo vozdeistviya sredy na telo konicheskoi formy”, Sib. zh. industr. mat., 21:2 (74) (2018), 122–130 | MR | Zbl

[43] Andreev A. V. and Shamolin M. V., “Methods of mathematical modeling of the action of a medium on a conical body”, J. Math. Sci., 221:2 (2017), 161–168 | DOI | MR | Zbl

[44] Lokshin B. Ya., Samsonov V.A., Shamolin M. V., “Pendulum systems with dynamical symmetry”, J. Math. Sci., 227:4 (2017), 461–519 | DOI | MR | Zbl