Dissipative systems: Relative roughness, nonroughness of various degrees, and integrability
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 174 (2020), pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the relative structural stability (the relative roughness) of dynamical systems considered not on the whole space of dynamical systems, but only on a certain subspace of it. Moreover, the space of deformations of dynamical systems also does not coincide with the whole space of admissible deformations. In particular, we consider dissipative systems of differential equations that arise in the rigid-body dynamics and the theory of oscillations; dissipation in such systems may by positive or negative. We examine the relative roughness of such systems and, under certain conditions, their relative nonroughness of various degrees. We also discuss problems of integrability of these systems in finite combinations of elementray functions.
Keywords: dynamical system, relative roughness, transcendent first integral.
@article{INTO_2020_174_a6,
     author = {M. V. Shamolin},
     title = {Dissipative systems: {Relative} roughness, nonroughness of various degrees, and integrability},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {70--82},
     publisher = {mathdoc},
     volume = {174},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_174_a6/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Dissipative systems: Relative roughness, nonroughness of various degrees, and integrability
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 70
EP  - 82
VL  - 174
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_174_a6/
LA  - ru
ID  - INTO_2020_174_a6
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Dissipative systems: Relative roughness, nonroughness of various degrees, and integrability
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 70-82
%V 174
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_174_a6/
%G ru
%F INTO_2020_174_a6
M. V. Shamolin. Dissipative systems: Relative roughness, nonroughness of various degrees, and integrability. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 174 (2020), pp. 70-82. http://geodesic.mathdoc.fr/item/INTO_2020_174_a6/

[1] Andronov A. A., Sobranie trudov, Izd-vo AN SSSR, M., 1956

[2] Andronov A. A., Leontovich E. A., “Dinamicheskie sistemy pervoi stepeni negrubosti na ploskosti”, Mat. sb., 68 (110):3 (1965), 328–372 | Zbl

[3] Andronov A. A., Leontovich E. A., “Dostatochnye usloviya dlya «negrubosti pervoi stepeni» dinamicheskoi sistemy na ploskosti”, Differ. uravn., 6:12 (1970), 2121–2134 | Zbl

[4] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. AN SSSR., 14:5 (1937), 247–250

[5] Anosov D. V., “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. Mat. in-ta AN SSSR., 90 (1967), 3–210

[6] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^n$”, Dokl. RAN., 380:1 (2001), 47–50

[7] Grobman D. M., “O gomeomorfizme sistem differentsialnykh uravnenii”, Dokl. AN SSSR., 128:5 (1959), 880–881 | MR | Zbl

[8] Grobman D. M., “Topologicheskaya klassifikatsiya okrestnostei osoboi tochki v $n$-mernom prostranstve”, Mat. sb., 56:1 (1962), 77–94 | MR | Zbl

[9] Gudkov D. A., “O ponyatii grubosti i stepennoi negrubosti dlya ploskikh algebraicheskikh krivykh”, Mat. sb., 67 (109):4 (1965), 481–527 | Zbl

[10] Eroshin V. A., Samsonov V. A., Shamolin M. V., “Modelnaya zadacha o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii”, Izvyu RAN. Mekh. zhidk. gaza., 1995, no. 3, 23–27

[11] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975

[12] Pali Dzh., Smeil S., “Teoremy strukturnoi ustoichivosti”, Matematika., 13:2 (1969), 145–155

[13] Pliss V. A., “O grubosti differentsialnykh uravnenii, zadannykh na tore”, Vestn. LGU. Cer. mat., 13 (1960), 15–23 | Zbl

[14] Pliss V. A., Nelokalnye problemy teorii kolebanii, Nauka, M.-L., 1964

[15] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1967

[16] Pliss V. A., “Ob ustoichivosti proizvolnoi sistemy po otnosheniyu k malym v smysle $C^1$ vozmuscheniyam”, Differ. uravn., 16:10 (1980), 1891–1892 | MR | Zbl

[17] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.-L., 1947

[18] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229

[19] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., Izd-vo AN SSSR, L., 1933, 133–135

[20] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[21] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. mat. mekh., 57:4 (1993), 40–49 | MR | Zbl

[22] Shamolin M. V., “Primenenie metodov topograficheskikh sistem Puankare i sistem sravneniya v nekotorykh konkretnykh sistemakh differentsialnykh uravnenii”, Vestn. MGU. Ser. 1. Mat. Mekh., 1993, no. 2, 66–70 | Zbl

[23] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. MGU. Ser. 1. Mat. Mekh., 1993, no. 1, 68–71 | MR

[24] Shamolin M. V., “Novoe dvuparametricheskoe semeistvo fazovykh portretov v zadache o dvizhenii tela v srede”, Dokl. RAN., 337:5 (1994), 611–614 | Zbl

[25] Shamolin M. V., “Opredelenie otnositelnoi grubosti i dvuparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela”, Usp. mat. nauk., 51:1 (1996), 175–176 | DOI | MR | Zbl

[26] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk., 52:3 (1997), 177–178 | DOI | MR | Zbl

[27] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | DOI | MR | Zbl

[28] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 364:5 (1999), 627–629 | Zbl

[29] Shamolin M. V., “O grubosti dissipativnykh sistem i otnositelnoi grubosti i negrubosti sistem s peremennoi dissipatsiei”, Usp. mat. nauk., 54:5 (1999), 181–182 | DOI | MR | Zbl

[30] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 371:4 (2000), 480–483

[31] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN., 403:4 (2005), 482–485

[32] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. mat. mekh., 69:6 (2005), 1003–1010 | MR | Zbl

[33] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. prikl. mat., 14:3 (2008), 3–237

[34] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 125 (2013), 5–254

[35] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. prikl. mat., 20:4 (2015), 3–231 | MR

[36] Shamolin M. V., “Modelirovanie dvizheniya tverdogo tela v soprotivlyayuscheisya srede i analogii s vikhrevymi dorozhkami”, Mat. model., 27:1 (2015), 33–53 | MR | Zbl

[37] Peixoto M., “On structural stability”, Ann. Math., 69 (1959), 199–222 | DOI | MR | Zbl

[38] Peixoto M., “Structural stability on two-dimensional manifolds”, Topology., 1:2 (1962), 101–120 | DOI | MR | Zbl

[39] Peixoto M., “On an approximation theorem of Kupka and Smale”, J. Differ. Equations., 3 (1966), 214–227 | DOI | MR

[40] Shamolin M. V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, J. Math. Sci., 110:2 (2002), 2528–2557 | DOI | MR | Zbl