Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_174_a5, author = {M. V. Shamolin}, title = {Odd-order integrable dynamical systems with dissipation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {52--69}, publisher = {mathdoc}, volume = {174}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_174_a5/} }
TY - JOUR AU - M. V. Shamolin TI - Odd-order integrable dynamical systems with dissipation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 52 EP - 69 VL - 174 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_174_a5/ LA - ru ID - INTO_2020_174_a5 ER -
M. V. Shamolin. Odd-order integrable dynamical systems with dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and Mechanics, Tome 174 (2020), pp. 52-69. http://geodesic.mathdoc.fr/item/INTO_2020_174_a5/
[1] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR
[2] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971
[3] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, Usp. mat. nauk., 38:1 (1983), 3–67 | MR | Zbl
[4] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. mat. mekh., 79:3 (2015), 307–316 | Zbl
[5] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.-L., 1947
[6] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. prikl. mat., 16:4 (2010), 3–229
[7] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., Izd-vo AN SSSR, L., 1933, 133–135
[8] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR
[9] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987
[10] Shamolin M. V., “Suschestvovanie i edinstvennost traektorii, imeyuschikh v kachestve predelnykh mnozhestv beskonechno udalennye tochki, dlya dinamicheskikh sistem na ploskosti”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 1993, no. 1, 68–71 | MR
[11] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Usp. mat. nauk., 52:3 (1997), 177–178 | DOI | MR | Zbl
[12] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, Usp. mat. nauk., 53:3 (1998), 209–210 | DOI | MR | Zbl
[13] Shamolin M. V., “Novoe semeistvo fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN., 371:4 (2000), 480–483
[14] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, «Ekzamen», M., 2007
[15] Shamolin M. V., “Zadacha o dvizhenii tela v soprotivlyayuscheisya srede s uchetom zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Mat. model., 24:10 (2012), 109–132 | MR
[16] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki tekhn. Sovr. mat. prilozh. Tematich. obzory., 125 (2013), 5–254
[17] Shamolin M. V., “Modelirovanie dvizheniya tverdogo tela v soprotivlyayuscheisya srede i analogii s vikhrevymi dorozhkami”, Mat. model., 27:1 (2015), 33–53 | MR | Zbl
[18] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k sfere”, Probl. mat. anal., 2016, no. 86, 139–151 | Zbl
[19] Shamolin M. V., “Novye sluchai integriruemosti sistem s dissipatsiei na kasatelnykh rassloeniyakh k dvumernoi i trekhmernoi sferam”, Dokl. RAN., 471:5 (2016), 547–551 | DOI | MR
[20] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN., 475:5 (2017), 519–523 | MR
[21] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Dokl. RAN., 477:2 (2017), 168–172 | DOI | MR
[22] Shamolin M. V., “Integriruemye dinamicheskie sistemy s konechnym chislom stepenei svobody s dissipatsiei”, Probl. mat. anal., 2018, no. 95, 79–101 | Zbl
[23] Shamolin M. V., “Integriruemye sistemy s dissipatsiei s dvumya i tremya stepenyam svobody”, Probl. mat. anal., 2018, no. 94, 91–109 | Zbl
[24] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernogo mnogoobraziya”, Dokl. RAN., 482:5 (2018), 527–533 | DOI
[25] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN., 479:3 (2018), 270–276 | DOI | MR
[26] Shamolin M. V., “Sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Probl. mat. anal., 2018, no. 90, 107–113 | Zbl