Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_173_a8, author = {V. V. Pankov and A. D. Baev and V. D. Kharchenko and A. A. Babaitsev}, title = {A priori estimate of solutions of one boundary-value problem in a strip for a higher-order degenerate elliptic equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {116--125}, publisher = {mathdoc}, volume = {173}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a8/} }
TY - JOUR AU - V. V. Pankov AU - A. D. Baev AU - V. D. Kharchenko AU - A. A. Babaitsev TI - A priori estimate of solutions of one boundary-value problem in a strip for a higher-order degenerate elliptic equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 116 EP - 125 VL - 173 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_173_a8/ LA - ru ID - INTO_2019_173_a8 ER -
%0 Journal Article %A V. V. Pankov %A A. D. Baev %A V. D. Kharchenko %A A. A. Babaitsev %T A priori estimate of solutions of one boundary-value problem in a strip for a higher-order degenerate elliptic equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 116-125 %V 173 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_173_a8/ %G ru %F INTO_2019_173_a8
V. V. Pankov; A. D. Baev; V. D. Kharchenko; A. A. Babaitsev. A priori estimate of solutions of one boundary-value problem in a strip for a higher-order degenerate elliptic equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 116-125. http://geodesic.mathdoc.fr/item/INTO_2019_173_a8/
[1] Baev A. D., “Vyrozhdayuschiesya ellipticheskie uravneniya vysokogo poryadka i svyazannye s nimi psevdodifferentsialnye operatory”, Dokl. AN SSSR., 265:5 (1982), 1044–1046 | MR | Zbl
[2] Baev A. D., Kachestvennye metody teorii kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii, Voronezh. gos. un-t, Voronezh, 2008
[3] Baev A. D., “Ob obschikh kraevykh zadachakh v poluprostranstve dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka”, Dokl. RAN., 422:6 (2008), 727–728 | Zbl
[4] Baev A. D., Buneev S. S., “Ob odnom klasse kraevykh zadach v polose dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka”, Dokl. RAN., 448:1 (2013), 7–8 | DOI | Zbl
[5] Baev A. D., Buneev S. S., “Apriornaya otsenka reshenii odnoi kraevoi zadachi v polose dlya vyrozhdayuschegosya ellipticheskogo uravneniya vysokogo poryadka”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2012, no. 1, 81–92 | Zbl
[6] Baev A. D., Pankov V. V., “O suschestvovanii reshenii odnogo klassa kraevykh zadach v polose dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka”, Dokl. RAN., 475:5 (2017), 1–3
[7] Vishik M. I., Grushin V. V., “Kraevye zadachi dlya ellipticheskikh uravnenii, vyrozhdayuschikhsya na granitse oblasti”, Mat. sb., 80 (112):4 (1969), 455–491 | Zbl
[8] Vishik M. I., Grushin V. V., “Vyrozhdayuschiesya ellipticheskie differentsialnye i psevdodifferentsialnye operatory”, Usp. mat. nauk., 25:4 (1970), 29–56 | MR | Zbl
[9] Glushko V. P., Apriornye otsenki reshenii kraevykh zadach dlya odnogo klassa vyrozhdayuschikhsya ellipticheskikh uravnenii vysokogo poryadka, Dep. v VINITI 27.03.1979, No 1048, VGU, Voronezh, 1979
[10] Pankov V. V., Baev A. D., Kharchenko V. D., “Ob apriornoi otsenke reshenii kraevoi zadachi v polose dlya vyrozhdayuschegosya ellipticheskogo uravneniya vysokogo poryadka”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2018, no. 4, 162–173