Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_173_a7, author = {A. V. Atanov and A. V. Loboda}, title = {Decomposable five-dimensional {Lie} algebras in the problem of holomorphic homogeneity in~$\mathbb{C}^3$}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {86--115}, publisher = {mathdoc}, volume = {173}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a7/} }
TY - JOUR AU - A. V. Atanov AU - A. V. Loboda TI - Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in~$\mathbb{C}^3$ JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 86 EP - 115 VL - 173 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_173_a7/ LA - ru ID - INTO_2019_173_a7 ER -
%0 Journal Article %A A. V. Atanov %A A. V. Loboda %T Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in~$\mathbb{C}^3$ %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 86-115 %V 173 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_173_a7/ %G ru %F INTO_2019_173_a7
A. V. Atanov; A. V. Loboda. Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in~$\mathbb{C}^3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 86-115. http://geodesic.mathdoc.fr/item/INTO_2019_173_a7/
[1] Akopyan R. S., Loboda A. V., “O golomorfnykh realizatsiyakh nilpotentnykh algebr Li”, Sovremennye metody i problemy matematicheskoi gidrodinamiki–2018, Mezhdunar. nauch. konf. (Voronezhskii gosudarstvennyi universitet, 3–8 maya 2018 g.), VGPU, Voronezh, 2018, 200–204
[2] Atanov A. V., Loboda A. V., “Golomorfnye realizatsii razlozhimykh pyatimernykh algebr Li”, Sovremennye metody teorii funktsii i smezhnye problemy, Voronezhskaya zimnyaya matematicheskaya shkola (28 yanvarya — 2 fevralya 2019 g.), VGU, Voronezh, 2019, 24–26
[3] Atanov A. V., Loboda A. V., Sukovykh V. I., “O golomorfnoi odnorodnosti veschestvennykh giperpoverkhnostei obschego polozheniya v $\mathbb{C}^3$”, Tr. Mat. in-ta im. V. A. Steklova RAN, 298, 2017, 20–41 | DOI | MR | Zbl
[4] Bishop R., Krittenden R., Geometriya mnogoobrazii, Mir, M., 1967
[5] Ezhov V. V., Loboda A. V., Shmalts G., “Kanonicheskaya forma mnogochlena chetvertoi stepeni v normalnom uravnenii veschestvennoi giperpoverkhnosti v $\mathbb{C}^3$”, Mat. zametki., 66:4 (1999), 624–626 | DOI | Zbl
[6] Isaev A. V., Mischenko M. A., “Klassifikatsiya sfericheskikh trubchatykh giperpoverkhnostei, imeyuschikh v signature formy Levi odin minus”, Izv. AN SSSR. Ser. mat., 52:6 (1988), 1123–1153
[7] Lagno V. I., Spichak S. V., Stognii V. I., Simmetriinyi analiz uravnenii evolyutsionnogo tipa, In-t komp. issled., M.—Izhevsk, 2004
[8] Loboda A. V., “O razmernosti gruppy, tranzitivno deistvuyuschei na giperpoverkhnosti v $\mathbb{C}^3$”, Funkts. anal. prilozh., 33:1 (1999), 68–71 | DOI | MR | Zbl
[9] Loboda A. V., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Tr. Mat. in-ta im. V. A. Steklova RAN., 235 (2001), 114–142 | Zbl
[10] Loboda A. V., “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb{C}^3$ s dvumernymi gruppami izotropii”, Mat. sb., 192:12 (2001), 3–24 | DOI | Zbl
[11] Loboda A. V., “Vsyakaya golomorfno-odnorodnaya trubka v $\mathbb{C}^2$ imeet affinno-odnorodnoe osnovanie”, Sib. mat. zh., 42:6 (2001), 1335–1339 | MR
[12] Loboda A. V., “Ob opredelenii odnorodnoi strogo psevdo-vypukloi giperpoverkhnosti po koeffitsientam ee normalnogo uravneniya”, Mat. zametki., 73:3 (2003), 453–456 | DOI | MR | Zbl
[13] Mubarakzyanov G. M., “O razreshimykh algebrakh Li”, Izv. vuzov. Mat., 1963, no. 1, 114–123 | MR | Zbl
[14] Mubarakzyanov G. M., “Klassifikatsiya veschestvennykh struktur algebr Li pyatogo poryadka”, Izv. vuzov. Mat., 1963, no. 3, 99–106 | MR | Zbl
[15] Shabat B. V., Vvedenie v kompleksnyi analiz. Funktsii neskolkikh peremennykh, Nauka, M., 1985
[16] Beloshapka V. K., Kossovskiy I. G., “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[17] Cartan E., “Sur la géométrie pseudoconforme des hypersurfaces de deux variables complexes: I”, Ann. Math. Pura Appl., 11:4 (1932), 17–90 | MR
[18] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR
[19] Dadok J., Yang P., “Automorphisms of tube domains and spherical hypersurfaces”, Am. J. Math., 107:4 (1985), 999–1013 | DOI | MR | Zbl
[20] Doubrov B., Komrakov B., Rabinovich M., “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and Topology of Submanifolds, v. 8, World Scientific, 1996, 168–178 | MR | Zbl
[21] Doubrov B., Medvedev A., The D., Homogeneous Levi nondegenerate hypersurfaces in $\mathbb{C}^3$, arXiv: 1711.02389v1
[22] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension $5$”, Acta Math., 201 (2008), 1–82 | DOI | MR | Zbl