Holomorphic regularization of boundary-value problems for Tikhonov systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 65-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of directions in the development of Lomov's regularization method is the approach related to holomorphic regularization of singularly perturbed problems, which allows one to construct solutions to such problems in the form of series in powers of a small parameter converging in the usual sense. For boundary-value problems, the problem of pseudoholomorphic continuation of solutions is very urgent. In this paper, we examine a boundary-value problem for a Tikhonov system and give conditions for the existence of its pseudoholomorphic solution.
Keywords: holomorphic regularization, pseudoholomorphic solution, Tikhonov system, pseudoholomorphic continuation, essentially singular manifold.
@article{INTO_2019_173_a5,
     author = {V. I. Kachalov},
     title = {Holomorphic regularization of boundary-value problems for {Tikhonov} systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {173},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a5/}
}
TY  - JOUR
AU  - V. I. Kachalov
TI  - Holomorphic regularization of boundary-value problems for Tikhonov systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 65
EP  - 71
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_173_a5/
LA  - ru
ID  - INTO_2019_173_a5
ER  - 
%0 Journal Article
%A V. I. Kachalov
%T Holomorphic regularization of boundary-value problems for Tikhonov systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 65-71
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_173_a5/
%G ru
%F INTO_2019_173_a5
V. I. Kachalov. Holomorphic regularization of boundary-value problems for Tikhonov systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 65-71. http://geodesic.mathdoc.fr/item/INTO_2019_173_a5/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[2] Vasileva A. B., Nefedov N. N., Teoremy sravneniya. Metod differentsialnykh neravenstv Chaplygina, Izd-vo MGU, M., 2007

[3] Kachalov V. I., Lomov S. A., “Psevdoanaliticheskie resheniya singulyarno vozmuschennykh zadach”, Dokl. RAN., 334:6 (1994), 694–695 | Zbl

[4] Kachalov V. I., “Golomorfnaya regulyarizatsiya singulyarno vozmuschennykh zadach”, Vestn. MEI., 2010, no. 6, 54–62

[5] Kachalov V. I., “O golomorfnoi regulyarizatsii singulyarno vozmuschennykh sistem differentsialnykh uravnenii”, Zh. vychisl. mat. mat. fiziki., 57:4 (2017), 654–661 | DOI | Zbl

[6] Kachalov V. I., “Ob odnom metode resheniya singulyarno vozmuschennykh sistem tikhonovskogo tipa”, Izv. vuzov. Mat., 2018, no. 6, 25–31 | MR

[7] Chang K. W., Howes F. A., Nonlinear singular perturbation phenomena: Theory and applications, Springer-Verlag, New York, 1984 | MR | Zbl

[8] Krivoruchenko M. I., Nadyozhin D. K., Yudin A. V., “Hydrostatic equilibrium of stars without electroneutrality constraint”, Phys. Rev. D., 97:15 (2018), 1–20