Singular perturbations in first-order partial differential equations with matrix-differential operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 132-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider differential equations whose degeneracy is due to the presence of a matrix-differential operator coefficient of the derivative perturbed by a small parameter. Properties of this operator are used in the study of initial-boundary-value problems for equations considered for the presence of a boundary layer. Regularity conditions of degeneracy are determined.
Keywords: Banach space, matrix-differential operator, first-order differential equation, parameter, boundary layer.
Mots-clés : small perturbation
@article{INTO_2019_173_a10,
     author = {V. I. Uskov},
     title = {Singular perturbations in first-order partial differential equations with matrix-differential operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {132--139},
     publisher = {mathdoc},
     volume = {173},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_173_a10/}
}
TY  - JOUR
AU  - V. I. Uskov
TI  - Singular perturbations in first-order partial differential equations with matrix-differential operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 132
EP  - 139
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_173_a10/
LA  - ru
ID  - INTO_2019_173_a10
ER  - 
%0 Journal Article
%A V. I. Uskov
%T Singular perturbations in first-order partial differential equations with matrix-differential operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 132-139
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_173_a10/
%G ru
%F INTO_2019_173_a10
V. I. Uskov. Singular perturbations in first-order partial differential equations with matrix-differential operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 4, Tome 173 (2019), pp. 132-139. http://geodesic.mathdoc.fr/item/INTO_2019_173_a10/

[1] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004 | MR

[2] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998

[3] Zubova S. P., “Reshenie odnorodnoi zadachi Koshi dlya uravneniya s neterovym operatorom pri proizvodnoi”, Dokl. RAN., 428:4 (2009), 444–446 | Zbl

[4] Zubova S. P., “O roli vozmuschenii v zadache Koshi dlya uravneniya s fredgolmovym operatorom pri proizvodnoi”, Dokl. RAN., 454:4 (2014), 383–386 | DOI | Zbl

[5] Zubova S. P., Raetskaya E. V., “Issledovanie zhestkosti deskriptornoi dinamicheskoi sistemy v banakhovom prostranstve”, Probl. mat. anal., 79 (2015), 127–132

[6] Zubova S. P., Raetskaya E. V., Uskov V. I., “O svoistvakh vyrozhdennosti nekotorogo differentsialnogo operatora i ikh primenenie”, Fundam. prikl. mat. (to appear)

[7] Zubova S. P., Uskov V. I., “Asimptoticheskoe reshenie zadachi Koshi dlya uravneniya pervogo poryadka s malym parametrom v banakhovom prostranstve. Regulyarnyi sluchai”, Mat. zametki., 103:3 (2018), 393–404 | DOI

[8] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[9] Nikolskii S. M., “Lineinye uravneniya v lineinykh normirovannykh prostranstvakh”, Izv. AN SSSR. Ser. mat., 7:3 (1943), 147–166

[10] Uskov V. I., “Reshenie zadachi Koshi dlya deskriptornogo uravneniya pervogo poryadka”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat. (to appear)

[11] Kunkel P., Mehrmann V., Differential-Algebraic Equations: Analysis and Numerical Solutions, EMA, Zurich, 2006 | MR

[12] Poincaré H., “Sur l'equilibre d'une masse fluide animee d'un movement de rotation”, Acta Math., 7 (1885), 259–380 | DOI | MR | Zbl