@article{INTO_2019_172_a9,
author = {V. V. Kornev and A. P. Khromov},
title = {Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {119--133},
year = {2019},
volume = {172},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a9/}
}
TY - JOUR AU - V. V. Kornev AU - A. P. Khromov TI - Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 119 EP - 133 VL - 172 UR - http://geodesic.mathdoc.fr/item/INTO_2019_172_a9/ LA - ru ID - INTO_2019_172_a9 ER -
%0 Journal Article %A V. V. Kornev %A A. P. Khromov %T Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 119-133 %V 172 %U http://geodesic.mathdoc.fr/item/INTO_2019_172_a9/ %G ru %F INTO_2019_172_a9
V. V. Kornev; A. P. Khromov. Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 119-133. http://geodesic.mathdoc.fr/item/INTO_2019_172_a9/
[1] Khromov A. P., “O skhodimosti formalnogo resheniya po metodu Fure volnovogo uravneniya s summiruemym potentsialom”, Zh. vychisl. mat. mat. fiz., 56:10 (2016), 1795–1809 | DOI | Zbl
[2] Kornev V. V., Khromov A. P., “Ob obobschennom formalnom reshenii po metodu Fure smeshannoi zadachi dlya neodorodnogo volnovogo uravneniya”, Sovremennye problemy teorii funktsii i ikh priblizhenii, 19 Mezhdunar. Saratov. zimnyaya shkola, posv. 90-letiyu akad. P. L. Ulyanova (Saratov, 29 yanvarya — 2 fevralya 2018), SGU, Saratov, 156–159
[3] Kornev V. V., Khromov A. P., “O reshenii neodnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevymi nachalnymi usloviyami”, Sovremennye problemy teorii funktsii i ikh priblizhenii, 19 Mezhdunar. Saratov. zimnyaya shkola, posv. 90-letiyu akad. P. L. Ulyanova (Saratov, 29 yanvarya — 2 fevralya 2018), SGU, Saratov, 159–160
[4] Kornev V. V., Khromov A. P., “O klassicheskom i obobschennom reshenii smeshannoi zadachi dlya volnovogo uravneniya”, Sovremennye metody teorii kraevykh zadach, Mezhdunar. konf. «Pontryaginskie chteniya—XXIX», posv. 90-letiyu akad. V. A. Ilina (Moskva, 2–6 maya), M., 2018, 132–133
[5] Rasulov M. L., Metod konturnogo integrala, Nauka, M., 1964
[6] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, RGU, Rostov, 1994
[7] Kornev V. V., Khromov A. P., “Smeshannaya zadacha dlya neodnorodnogo volnovogo uravneniya s summiruemym potentsialom”, Zh. vychisl. mat. mat. fiz., 57:10 (2017), 1692–1707 | DOI | Zbl
[8] Kornev V. V., Khromov A. P., “Skhodimost formalnogo resheniya po metodu Fure v smeshannoi zadache dlya prosteishego neodnorodnogo volnovogo uravneniya”, Matematika. Mekhanika, sb. nauch. tr., v. 19, SGU, Saratov, 2017, 41–44
[9] Levitan B. M., Operatory obobschennogo sdviga i nekotorye ikh primeneniya, Fizmalit, M., 1965