Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 119-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Fourier method, we obtain necessary and sufficient conditions for the existence of a classical solution of the mixed problem for a homogeneous wave equation with summable potential and fixed endpoints and also obtain an explicit representation of the solution in the form of a rapidly converging series.
Keywords: mixed task, wave equation, summable potential, Fourier method.
@article{INTO_2019_172_a9,
     author = {V. V. Kornev and A. P. Khromov},
     title = {Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {119--133},
     publisher = {mathdoc},
     volume = {172},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a9/}
}
TY  - JOUR
AU  - V. V. Kornev
AU  - A. P. Khromov
TI  - Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 119
EP  - 133
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a9/
LA  - ru
ID  - INTO_2019_172_a9
ER  - 
%0 Journal Article
%A V. V. Kornev
%A A. P. Khromov
%T Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 119-133
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a9/
%G ru
%F INTO_2019_172_a9
V. V. Kornev; A. P. Khromov. Classical solution of the mixed problem for a homogeneous wave equation with fixed endpoints. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 119-133. http://geodesic.mathdoc.fr/item/INTO_2019_172_a9/

[1] Khromov A. P., “O skhodimosti formalnogo resheniya po metodu Fure volnovogo uravneniya s summiruemym potentsialom”, Zh. vychisl. mat. mat. fiz., 56:10 (2016), 1795–1809 | DOI | Zbl

[2] Kornev V. V., Khromov A. P., “Ob obobschennom formalnom reshenii po metodu Fure smeshannoi zadachi dlya neodorodnogo volnovogo uravneniya”, Sovremennye problemy teorii funktsii i ikh priblizhenii, 19 Mezhdunar. Saratov. zimnyaya shkola, posv. 90-letiyu akad. P. L. Ulyanova (Saratov, 29 yanvarya — 2 fevralya 2018), SGU, Saratov, 156–159

[3] Kornev V. V., Khromov A. P., “O reshenii neodnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevymi nachalnymi usloviyami”, Sovremennye problemy teorii funktsii i ikh priblizhenii, 19 Mezhdunar. Saratov. zimnyaya shkola, posv. 90-letiyu akad. P. L. Ulyanova (Saratov, 29 yanvarya — 2 fevralya 2018), SGU, Saratov, 159–160

[4] Kornev V. V., Khromov A. P., “O klassicheskom i obobschennom reshenii smeshannoi zadachi dlya volnovogo uravneniya”, Sovremennye metody teorii kraevykh zadach, Mezhdunar. konf. «Pontryaginskie chteniya—XXIX», posv. 90-letiyu akad. V. A. Ilina (Moskva, 2–6 maya), M., 2018, 132–133

[5] Rasulov M. L., Metod konturnogo integrala, Nauka, M., 1964

[6] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, RGU, Rostov, 1994

[7] Kornev V. V., Khromov A. P., “Smeshannaya zadacha dlya neodnorodnogo volnovogo uravneniya s summiruemym potentsialom”, Zh. vychisl. mat. mat. fiz., 57:10 (2017), 1692–1707 | DOI | Zbl

[8] Kornev V. V., Khromov A. P., “Skhodimost formalnogo resheniya po metodu Fure v smeshannoi zadache dlya prosteishego neodnorodnogo volnovogo uravneniya”, Matematika. Mekhanika, sb. nauch. tr., v. 19, SGU, Saratov, 2017, 41–44

[9] Levitan B. M., Operatory obobschennogo sdviga i nekotorye ikh primeneniya, Fizmalit, M., 1965