Stochastic modeling of surfaces with modified Gauss functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 96-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct a mathematical model for estimating the mass of water flooding the coastline of a reservoir. The models of the relief of the bottom of the reservoir and the relief of the flooding part of the coastline are constructed by stochastic methods. The simulation is based on empirical data of measurements of depths of the reservoir and the study of level lines on maps of the coastal zone. The equations of the surface relief of the coastal zone are constructed by using empirical data from maps with level lines.
Keywords: stochastic modeling of surfaces, modified Gauss functions, numerical methods, computer modeling, testing of statistical hypotheses.
@article{INTO_2019_172_a6,
     author = {V. A. Rodin and S. V. Sinegubov},
     title = {Stochastic modeling of surfaces with modified {Gauss} functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {96--103},
     publisher = {mathdoc},
     volume = {172},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a6/}
}
TY  - JOUR
AU  - V. A. Rodin
AU  - S. V. Sinegubov
TI  - Stochastic modeling of surfaces with modified Gauss functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 96
EP  - 103
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a6/
LA  - ru
ID  - INTO_2019_172_a6
ER  - 
%0 Journal Article
%A V. A. Rodin
%A S. V. Sinegubov
%T Stochastic modeling of surfaces with modified Gauss functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 96-103
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a6/
%G ru
%F INTO_2019_172_a6
V. A. Rodin; S. V. Sinegubov. Stochastic modeling of surfaces with modified Gauss functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 96-103. http://geodesic.mathdoc.fr/item/INTO_2019_172_a6/

[1] Karev M. A., Modelirovanie stokhasticheskikh ob'ektov s peremennym chislom odnorodnykh strukturnykh elementov, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, Ulyanovskii gos. un-t, Ulyanovsk, 2016, 141 pp.

[2] Arifulin E. Z., “Otsenka effektivnosti metoda vosstanovleniya relefa mestnosti na osnove kartograficheskikh dannykh”, Vestn. Voronezh. gos. tekhn. un-ta., 10:3 (2014), 10–12

[3] Byzov L. M., Sankov V. A., “Matematicheskoe modelirovanie evolyutsii relefa sbrosovogo ustupa na primere Svyatonosskogo podnyatiya (Baikalskaya vpadina)”, Izv. Irkutsk. gos. un-ta. Ser. Nauki o Zemle., 12 (2015), 12–22

[4] Dobretsov N. L., Kirdyashkin A. G., Glubinnaya geodinamika, Geo, Novosibirsk, 2001

[5] Korobeinikov S. N., Reverdatto V. V., Polyanskii O. P., Sverdlova V. G., Babichev A. V., “Formirovanie relefa dnevnoi poverkhnosti v raione kollizii plit: matematicheskoe modelirovanie”, Prikl. mekh. tekhn. fiz., 53:4 (2012), 124–137 | Zbl

[6] Krivtsova I. E., Lebedev I. S., Nasteka A. V., Osnovy diskretnoi matematiki, Un-t ITMO, SPb., 2016

[7] Naumov A. I., Kichigin E. K., Mokh Akhmed Medani Akhmed Elamin, “Metodiki vychisleniya statisticheskikh kharakteristik otsenki vysoty relefa po tsifrovoi karte vysot relefa mestnosti pri sluchainom kharaktere zadaniya koordinat tochki rascheta”, Akademicheskie Zhukovskie Chteniya, Voenno-vozdushnaya akademiya im. prof. N. E. Zhukovskogo i Yu. A. Gagarina, Voronezh, 2013

[8] Syzdykova G. D., “Funktsiya raspredeleniya morfometricheskogo priznaka s uchetom geometricheskikh parametrov raschleneniya relefa”, Vestn. Kazakhsk. nats. tekhn. un-ta., 110:4 (2014), 70–74

[9] Khromykh V. V., Khromykh O. V., Tsifrovye modeli relefa, TML-Press, Tomsk, 2007

[10] Yampolskii S. M., Naumov A. I., Kichigin E. K., Rubinov V. I., Mokh Akhmed Medani Akhmed Elamin, “Statisticheskaya model prognoznogo profilya relefa mestnosti v zadache vypolneniya malovysotnogo poleta vozdushnogo sudna po tsifrovoi karte vysot”, Elektr. zh. Tr. MAI., 2013, no. 76

[11] Branciamore S., Rodin A. S., Goroshin G., Riggs A. D., “Epigenetics and evolution: Transposons and the stochastic epigenetic modification model”, AIMS Genetics, 1:2 (2015), 148–162 | DOI