Methods for solving problems on thermal conductivity of multilayer media in the presence of heat sources
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of problems on phase transitions in multilayer media when they are heated is of practical interest owing to the increasing use of multilayer materials in engineering and construction under various temperature conditions. In this paper, we assume that the medium contains distributed heat sources caused by physical or chemical processes, which can lead to phase transitions. We describe the method of generalized Bers degrees and the matrix method for solving the heat conduction problem in multilayer media and for the search for boundaries of phase transitions.
Keywords: generalized Bers degrees, heat equation, Cauchy problem, matrix method, multilayer medium
Mots-clés : phase transitions.
@article{INTO_2019_172_a0,
     author = {Yu. V. Afanasenkova and Yu. A. Gladyshev and V. V. Kalmanovich},
     title = {Methods for solving problems on thermal conductivity of multilayer media in the presence of heat sources},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {172},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a0/}
}
TY  - JOUR
AU  - Yu. V. Afanasenkova
AU  - Yu. A. Gladyshev
AU  - V. V. Kalmanovich
TI  - Methods for solving problems on thermal conductivity of multilayer media in the presence of heat sources
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 8
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_172_a0/
LA  - ru
ID  - INTO_2019_172_a0
ER  - 
%0 Journal Article
%A Yu. V. Afanasenkova
%A Yu. A. Gladyshev
%A V. V. Kalmanovich
%T Methods for solving problems on thermal conductivity of multilayer media in the presence of heat sources
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-8
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_172_a0/
%G ru
%F INTO_2019_172_a0
Yu. V. Afanasenkova; Yu. A. Gladyshev; V. V. Kalmanovich. Methods for solving problems on thermal conductivity of multilayer media in the presence of heat sources. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 3-8. http://geodesic.mathdoc.fr/item/INTO_2019_172_a0/

[1] Verzhbitskii V. M., Chislennye metody. Matematicheskii analiz i obyknovennye differentsialnye uravneniya, Vysshaya shkola, M., 2001

[2] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 2011

[3] Gladyshev Yu. A., Dvoryanchikova Yu. V., “Protsess teploprovodnosti v neodnorodnoi plastine pri peremennom koeffitsiente vneshnego teploobmena”, Tr. 5 Rossiiskoi natsionalnoi konferentsii po teploobmenu, MEI, M., 2010, 76–79

[4] Gladyshev Yu. A., Kalmanovich V. V., Seregina E. V., Stepovich M. A., “O vozmozhnosti sovmestnogo primeneniya matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessa teploperenosa v ob'ektakh, obladayuschikh tsilindricheskoi simmetriei”, Voprosy atomnoi nauki i tekhniki. Ser. Yaderno-reaktornye konstanty., 2018, no. 3, 158–167

[5] Kalmanovich V. V., Stepovich M. A., “O sovmestnom primenenii matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessov teplomassoperenosa v poluprovodnikovykh materialakh elektronnoi tekhniki”, Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem, IPPM RAN, M., 2018, 194–201

[6] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Vysshaya shkola, M., 2005

[7] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93 | DOI | MR | Zbl