Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_172_a0, author = {Yu. V. Afanasenkova and Yu. A. Gladyshev and V. V. Kalmanovich}, title = {Methods for solving problems on thermal conductivity of multilayer media in the presence of heat sources}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--8}, publisher = {mathdoc}, volume = {172}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_172_a0/} }
TY - JOUR AU - Yu. V. Afanasenkova AU - Yu. A. Gladyshev AU - V. V. Kalmanovich TI - Methods for solving problems on thermal conductivity of multilayer media in the presence of heat sources JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 3 EP - 8 VL - 172 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_172_a0/ LA - ru ID - INTO_2019_172_a0 ER -
%0 Journal Article %A Yu. V. Afanasenkova %A Yu. A. Gladyshev %A V. V. Kalmanovich %T Methods for solving problems on thermal conductivity of multilayer media in the presence of heat sources %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 3-8 %V 172 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_172_a0/ %G ru %F INTO_2019_172_a0
Yu. V. Afanasenkova; Yu. A. Gladyshev; V. V. Kalmanovich. Methods for solving problems on thermal conductivity of multilayer media in the presence of heat sources. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 3, Tome 172 (2019), pp. 3-8. http://geodesic.mathdoc.fr/item/INTO_2019_172_a0/
[1] Verzhbitskii V. M., Chislennye metody. Matematicheskii analiz i obyknovennye differentsialnye uravneniya, Vysshaya shkola, M., 2001
[2] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 2011
[3] Gladyshev Yu. A., Dvoryanchikova Yu. V., “Protsess teploprovodnosti v neodnorodnoi plastine pri peremennom koeffitsiente vneshnego teploobmena”, Tr. 5 Rossiiskoi natsionalnoi konferentsii po teploobmenu, MEI, M., 2010, 76–79
[4] Gladyshev Yu. A., Kalmanovich V. V., Seregina E. V., Stepovich M. A., “O vozmozhnosti sovmestnogo primeneniya matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessa teploperenosa v ob'ektakh, obladayuschikh tsilindricheskoi simmetriei”, Voprosy atomnoi nauki i tekhniki. Ser. Yaderno-reaktornye konstanty., 2018, no. 3, 158–167
[5] Kalmanovich V. V., Stepovich M. A., “O sovmestnom primenenii matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessov teplomassoperenosa v poluprovodnikovykh materialakh elektronnoi tekhniki”, Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem, IPPM RAN, M., 2018, 194–201
[6] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Vysshaya shkola, M., 2005
[7] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93 | DOI | MR | Zbl