Stable sequential Pontryagin maximum principle in optimal control problems with phase restrictions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 102-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain optimality conditions in an optimal control problem with pointwise phase constraints of the equality and inequality types treated as constraints in a Hilbert space. The main results of this work are the regularized, stable under errors of source data, Lagrange principle and the pointwise Pontryagin maximum principle in the iterative form, which, in turn, yield a functional way of constructing a minimizing approximate solution to the problem considered.
Keywords: optimal control, ill-posed problem, dual regularization, iterative dual regularization.
@article{INTO_2019_171_a8,
     author = {F. A. Kuterin and A. A. Evtushenko},
     title = {Stable sequential {Pontryagin} maximum principle in optimal control problems with phase restrictions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {102--113},
     publisher = {mathdoc},
     volume = {171},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a8/}
}
TY  - JOUR
AU  - F. A. Kuterin
AU  - A. A. Evtushenko
TI  - Stable sequential Pontryagin maximum principle in optimal control problems with phase restrictions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 102
EP  - 113
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_171_a8/
LA  - ru
ID  - INTO_2019_171_a8
ER  - 
%0 Journal Article
%A F. A. Kuterin
%A A. A. Evtushenko
%T Stable sequential Pontryagin maximum principle in optimal control problems with phase restrictions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 102-113
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_171_a8/
%G ru
%F INTO_2019_171_a8
F. A. Kuterin; A. A. Evtushenko. Stable sequential Pontryagin maximum principle in optimal control problems with phase restrictions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 102-113. http://geodesic.mathdoc.fr/item/INTO_2019_171_a8/

[1] Arutyunov A. V., Usloviya ekstremuma. Normalnye i vyrozhdennye zadachi, Faktorial Press, M., 1997 | MR

[2] Milyutin A. A., Dmitruk A. V., Osmolovskii N. P., Printsip maksimuma v optimalnom upravlenii, M., 2004

[3] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011

[4] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. mat. mat. fiz., 44:11 (2004), 2001–2019 | MR | Zbl

[5] Sumin M. I., “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. mat. mat. fiz., 47:4 (2007), 602–625 | MR | Zbl

[6] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychisl. mat. mat. fiz., 54:1 (2014), 25–49 | DOI | Zbl

[7] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya, NGU, N. Novgorod, 2009

[8] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna—Takkera v gilbertovom prostranstve”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1594–1615 | MR | Zbl

[9] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zh. vychisl. mat. mat. fiz., 49:12 (2009), 2083–2102 | MR

[10] Sumin M. I., “Ustoichivyi sekventsialnyi printsip maksimuma Pontryagina v zadache optimalnogo upravlenii s fazovymi ogranicheniyami”, XII Vseross. sovesch. po problemam upravleniya, VSPU-2014 (16-19 iyunya 2014 g.), In-t problem upravleniya im. V. A. Trapeznikova RAN, M., 2014