Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_171_a8, author = {F. A. Kuterin and A. A. Evtushenko}, title = {Stable sequential {Pontryagin} maximum principle in optimal control problems with phase restrictions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {102--113}, publisher = {mathdoc}, volume = {171}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a8/} }
TY - JOUR AU - F. A. Kuterin AU - A. A. Evtushenko TI - Stable sequential Pontryagin maximum principle in optimal control problems with phase restrictions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 102 EP - 113 VL - 171 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_171_a8/ LA - ru ID - INTO_2019_171_a8 ER -
%0 Journal Article %A F. A. Kuterin %A A. A. Evtushenko %T Stable sequential Pontryagin maximum principle in optimal control problems with phase restrictions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 102-113 %V 171 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_171_a8/ %G ru %F INTO_2019_171_a8
F. A. Kuterin; A. A. Evtushenko. Stable sequential Pontryagin maximum principle in optimal control problems with phase restrictions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 102-113. http://geodesic.mathdoc.fr/item/INTO_2019_171_a8/
[1] Arutyunov A. V., Usloviya ekstremuma. Normalnye i vyrozhdennye zadachi, Faktorial Press, M., 1997 | MR
[2] Milyutin A. A., Dmitruk A. V., Osmolovskii N. P., Printsip maksimuma v optimalnom upravlenii, M., 2004
[3] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011
[4] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. mat. mat. fiz., 44:11 (2004), 2001–2019 | MR | Zbl
[5] Sumin M. I., “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. mat. mat. fiz., 47:4 (2007), 602–625 | MR | Zbl
[6] Sumin M. I., “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zh. vychisl. mat. mat. fiz., 54:1 (2014), 25–49 | DOI | Zbl
[7] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya, NGU, N. Novgorod, 2009
[8] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna—Takkera v gilbertovom prostranstve”, Zh. vychisl. mat. mat. fiz., 51:9 (2011), 1594–1615 | MR | Zbl
[9] Sumin M. I., “Parametricheskaya dvoistvennaya regulyarizatsiya dlya zadachi optimalnogo upravleniya s potochechnymi fazovymi ogranicheniyami”, Zh. vychisl. mat. mat. fiz., 49:12 (2009), 2083–2102 | MR
[10] Sumin M. I., “Ustoichivyi sekventsialnyi printsip maksimuma Pontryagina v zadache optimalnogo upravlenii s fazovymi ogranicheniyami”, XII Vseross. sovesch. po problemam upravleniya, VSPU-2014 (16-19 iyunya 2014 g.), In-t problem upravleniya im. V. A. Trapeznikova RAN, M., 2014