Representation of solutions of a certain integro-differential equation and applications
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 78-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a second-order integro-differential equation with unbounded operator coefficients in a Hilbert space, which is an abstract hyperbolic equation perturbed by an integral term with a difference-type kernel of a special form. This equation arises in the description of various viscoelastic systems. Using the system of generalized eigenvectors of the operator bundle associated with the equation considered, we construct a $p$-basis in the orthogonal sum of Hilbert spaces. Using this basis, we find a representation of the solution of the equation. We also discuss possible applications to problems of viscoelasticity.
Keywords: integro-differential equation, spectral analysis, operator bundle, $p$-base.
@article{INTO_2019_171_a6,
     author = {D. A. Zakora},
     title = {Representation of solutions of a certain integro-differential equation and applications},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {78--93},
     publisher = {mathdoc},
     volume = {171},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a6/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Representation of solutions of a certain integro-differential equation and applications
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 78
EP  - 93
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_171_a6/
LA  - ru
ID  - INTO_2019_171_a6
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Representation of solutions of a certain integro-differential equation and applications
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 78-93
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_171_a6/
%G ru
%F INTO_2019_171_a6
D. A. Zakora. Representation of solutions of a certain integro-differential equation and applications. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 78-93. http://geodesic.mathdoc.fr/item/INTO_2019_171_a6/

[1] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS press, M., 2016

[2] Vlasov V. V., Rautian N. A., Shamaev A. S., “Spektralnyi analiz i korrektnaya razreshimost abstraktnykh integrodifferentsialnykh uravnenii, voznikayuschikh v teplofizike i akustike”, Sovr. mat. Fundam. napravl., 39 (2011), 36–65

[3] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970

[4] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[5] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[6] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishenev, 1986 | MR

[7] Alabau-Boussouria F., Cannarsa P., “A general method for proving sharp energy decay rates for memory-dissipative evolution equations”, C. R. Acad. Sci. Paris. Ser. I, 347:15–16 (2009), 867–872 | DOI | MR

[8] Dafermos C. M., “Asymptotic stability in viscoelasticity”, Arch. Rat. Mech. Anal., 37 (1970), 297–308 | DOI | MR | Zbl

[9] Desch W., Grimmer R., Schappacher W., “Some considerations for linear integrodifferential equations”, J. Math. Anal. Appl., 104:1 (1984), 219–234 | DOI | MR | Zbl

[10] Eremenko A., Ivanov S., “Spectra of the Gurtin–Pipkin-type equations”, SIAM J. Math. Analysis, 43:5 (2011), 2296–2306 | DOI | MR | Zbl

[11] Gurtin M. E., Pipkin A. C., “A general theory of heat conduction with finite wave speeds”, Arch. Rat. Mech. Anal., 31:2 (1968), 113–126 | DOI | MR | Zbl

[12] Heard M. L., “An abstract semilinear hyperbolic Volterra integrodifferential equation”, J. Math. Anal. Appl., 80:1 (1981), 175–202 | DOI | MR | Zbl

[13] Kopachevsky N. D., Krein S. G., Operator Approach in Linear Problems of Hydrodynamics. Vol. 2. Non-Self-Adjoint Problems for Viscous Fluids, Birkhäuser, Basel–Boston–Berlin, 2003 | MR

[14] Vlasov V. V., Rautian N. A., “On the asymptotic behavior of solutions of integro-differential equations in a Hilbert space”, Differ. Equ., 49:6 (2013), 718–730 | DOI | MR | Zbl