On spectral properties of a certain class of perturbed operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 57-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the method of similar operators, we examine spectral properties of the perturbed operator ${A-B}:D(A)\subset H \to H$, where $A$ is a self-adjoint operator with a compact resolvent and $B$ is an unbounded perturbation. Under certain conditions on the spectrum of the unperturbed operator $A$ and the perturbation $B$, we obtain estimates of the spectral sets of the perturbed operator. The results obtained are applied to the study of the spectrum of differential operators with periodic boundary conditions and a nonsmooth potential.
Keywords: method of similar operators, spectrum, differential operator.
@article{INTO_2019_171_a4,
     author = {G. V. Garkavenko},
     title = {On spectral properties of a certain class of perturbed operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--69},
     publisher = {mathdoc},
     volume = {171},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a4/}
}
TY  - JOUR
AU  - G. V. Garkavenko
TI  - On spectral properties of a certain class of perturbed operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 57
EP  - 69
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_171_a4/
LA  - ru
ID  - INTO_2019_171_a4
ER  - 
%0 Journal Article
%A G. V. Garkavenko
%T On spectral properties of a certain class of perturbed operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 57-69
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_171_a4/
%G ru
%F INTO_2019_171_a4
G. V. Garkavenko. On spectral properties of a certain class of perturbed operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 57-69. http://geodesic.mathdoc.fr/item/INTO_2019_171_a4/

[1] Baskakov A. G., Garmonicheskii analiz lineinykh operatorov, VGU, Voronezh, 1987

[2] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. mat. zh., 24:1 (1987), 21–39 | MR

[3] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. mat., 75:3 (2011), 3–28 | DOI | MR | Zbl

[4] Garkavenko G. V., “O diagonalizatsii nekotorykh klassov lineinykh operatorov”, Izv. vuzov. Mat., 1994, no. 11, 14–19 | MR | Zbl

[5] Garkavenko G. V., “Spektralnyi analiz vozmuschennykh samosopryazhennykh operatorov s diskretnym spektrom”, Aktualnye napravleniya nauchnykh issledovanii XXI veka: teoriya i praktika, Voronezh, 2017, 101–104

[6] Garkavenko G. V., Uskova N. B., “Metod podobnykh operatorov v issledovanii spektralnykh svoistv raznostnogo operatora s rastuschim potentsialom”, Sib. elektr. mat. izv., 14 (2017), 673–689 | MR | Zbl

[7] Garkavenko G. V., Uskova N. B., “Spektralnyi analiz odnogo klassa raznostnykh operatorov s rastuschim potentsialom”, Izv. Saratov. un-ta. Ser. Mat. Mekh. Inform., 16:4 (2016), 395–402 | MR | Zbl

[8] Garkavenko G. V., Zgolich A. R., Uskova N. B., “Spectral analysis of a difference operator with a growing potential”, J. Phys. Conf. Ser., 973:1 (2018), 012053 | DOI | MR