On some properties of almost periodic at infinity of functions from homogeneous spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 47-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider homogeneous spaces of functions defined on the whole real axis with values in a complex Banach space. A new class of functions almost uniformly periodic at infinity from a homogeneous space is introduced and exmined. Four definitions of such functions are proposed and their equivalence is proved. Fourier series of functions almost periodic at infinity are constructed and their properties are analyzed. In this paper, we essentially used results of the theory of isometric representations and the theory of Banach modules.
Keywords: function almost periodic at infinity, function slowly varying at infinity, homogeneous space, Banach module, almost periodic vector, Fourier series.
@article{INTO_2019_171_a3,
     author = {I. I. Strukova},
     title = {On some properties of almost periodic at infinity of functions from homogeneous spaces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {47--56},
     publisher = {mathdoc},
     volume = {171},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a3/}
}
TY  - JOUR
AU  - I. I. Strukova
TI  - On some properties of almost periodic at infinity of functions from homogeneous spaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 47
EP  - 56
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_171_a3/
LA  - ru
ID  - INTO_2019_171_a3
ER  - 
%0 Journal Article
%A I. I. Strukova
%T On some properties of almost periodic at infinity of functions from homogeneous spaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 47-56
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_171_a3/
%G ru
%F INTO_2019_171_a3
I. I. Strukova. On some properties of almost periodic at infinity of functions from homogeneous spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 47-56. http://geodesic.mathdoc.fr/item/INTO_2019_171_a3/

[1] Baskakov A. G., Garmonicheskii analiz v banakhovykh modulyakh i spektralnaya teoriya lineinykh operatorov, Izd. dom VGU, Voronezh, 2016

[2] Baskakov A. G., “Garmonicheskii i spektralnyi analiz operatorov s ogranichennymi stepenyami i ogranichennykh polugrupp operatorov na banakhovom prostranstve”, Matem. zametki, 97:2 (2015), 174–190 | DOI | Zbl

[3] Baskakov A. G., “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (2013), 77–128 | DOI | MR | Zbl

[4] Baskakov A. G., “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi operatornymi koeffitsientami, raznostnye otnosheniya i polugruppy raznostnykh otnoshenii”, Izv. RAN. Ser. matem., 73:2 (2009), 3–68 | DOI | MR | Zbl

[5] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, SMFN, 9 (2004), 3–151 | Zbl

[6] Baskakov A. G., “Spektralnye kriterii pochti periodichnosti reshenii funktsionalnykh uravnenii”, Matem. zametki, 24:2 (1978), 195–206

[7] Baskakov A. G., Nekotorye voprosy teorii vektornykh pochti periodicheskikh funktsii, Diss. kand. fiz.-mat. nauk, VGU, Voronezh, 1973

[8] Baskakov A. G., Didenko V. B., “O sostoyaniyakh obratimosti raznostnykh i differentsialnykh operatorov”, Izv. RAN. Ser. matem., 82:1 (2018), 3–16 | MR | Zbl

[9] Baskakov A. G., Duplischeva A.Yu., “Raznostnye operatory i operatornye matritsy vtorogo poryadka”, Izv. RAN. Ser. matem., 79:2 (2015), 3–20 | DOI | MR | Zbl

[10] Baskakov A. G., Kaluzhina N. S., Polyakov D. M., “Medlenno menyayuschiesya na beskonechnosti polugruppy operatorov”, Izv. vuzov. Matem., 2014, no. 7, 3–14 | Zbl

[11] Baskakov A. G., Krishtal I. A., “Garmonicheskii analiz kauzalnykh operatorov i ikh spektralnye svoistva”, Izv. RAN. Seriya matem., 69:3 (2005), 3–54 | DOI | MR | Zbl

[12] Baskakov A. G., Strukova I. I., Trishina I. A., “Pochti periodicheskie na beskonechnosti resheniya differentsialnykh uravnenii s neogranichennymi operatornymi koeffitsientami”, Sib. matem. zhurn., 59:2 (2018), 293–308 | MR | Zbl

[13] Levitan B. M., Pochti-periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978

[14] Ross K., Khyuitt E., Abstraktnyi garmonicheskii analiz, v. 2, Mir, M., 1975

[15] Strukov V. E., Strukova I. I., “O medlenno menyayuschikhsya i periodicheskikh na beskonechnosti funktsiyakh iz odnorodnykh prostranstv i garmonichnykh raspredeleniyakh”, Vestn. VGU. Seriya: Fizika. Matematika, 2018, no. 4, 195–205

[16] Strukova I. I., “O teoreme Vinera dlya periodicheskikh na beskonechnosti funktsii”, Sib. matem. zhurn., 57:1 (2016), 186–198 | MR | Zbl

[17] Strukova I. I., “Periodicheskie na beskonechnosti funktsii ogranichennoi variatsii”, Nauchnye vedomosti BelGU. Ser. Matematika. Fizika, 44:20 (241) (2016), 50–59

[18] Strukova I. I., “Spektry algebr medlenno menyayuschikhsya i periodicheskikh na beskonechnosti funktsii i banakhovy predely”, Vestn. VGU. Seriya: Fizika. Matematika, 2015, no. 3, 161–165 | Zbl

[19] Strukova I. I., “O garmonicheskom analize periodicheskikh na beskonechnosti funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:1 (2014), 28–38 | Zbl

[20] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser, Basel, 2011 | MR | Zbl

[21] Baskakov A. G., Krishtal I. A., “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterranean Journal of Mathematics, 13:5 (2016), 2443–2462 | DOI | MR | Zbl

[22] Baskakov A., Strukova I., “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | MR

[23] Bohr H., “Almost periodic functions”, Acta math, 45 (1925), 29–127 | DOI | MR