Criterion for the Volterra property of the Cauchy problem for the pantograph equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 140-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, spectral properties of the Cauchy problem of the pantograph equation are examined and the boundary of the parameter range is established at which the problem remains a Volterra problem.
Mots-clés : pantograph equation, Gaal formula.
Keywords: spectrum, complete continuity, nuclearity, Hilbert–Schmidt operator, operator trace formula
@article{INTO_2019_171_a12,
     author = {A. Sh. Shaldanbaev and M. I. Akylbaev and M. T. Shomanbayeva and A. A. Shaldanbayeva},
     title = {Criterion for the {Volterra} property of the {Cauchy} problem for the pantograph equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {140--145},
     publisher = {mathdoc},
     volume = {171},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a12/}
}
TY  - JOUR
AU  - A. Sh. Shaldanbaev
AU  - M. I. Akylbaev
AU  - M. T. Shomanbayeva
AU  - A. A. Shaldanbayeva
TI  - Criterion for the Volterra property of the Cauchy problem for the pantograph equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 140
EP  - 145
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_171_a12/
LA  - ru
ID  - INTO_2019_171_a12
ER  - 
%0 Journal Article
%A A. Sh. Shaldanbaev
%A M. I. Akylbaev
%A M. T. Shomanbayeva
%A A. A. Shaldanbayeva
%T Criterion for the Volterra property of the Cauchy problem for the pantograph equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 140-145
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_171_a12/
%G ru
%F INTO_2019_171_a12
A. Sh. Shaldanbaev; M. I. Akylbaev; M. T. Shomanbayeva; A. A. Shaldanbayeva. Criterion for the Volterra property of the Cauchy problem for the pantograph equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 140-145. http://geodesic.mathdoc.fr/item/INTO_2019_171_a12/

[1] Gokhberg N. Ts., Krein M. G., “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, Usp. mat. nauk, 12:2 (74) (1957) | Zbl

[2] Lidskii V. B., “Nesamosopryazhennye operatory, imeyuschie sled”, Dokl. AN SSSR., 125:3 (1959), 485–488

[3] Nersesyan A. B., “K teorii integralnykh uravnenii tipa Volterra”, Dokl. AN SSSR., 155:5 (1964), 1006–1009

[4] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, IL, M., 1954

[5] Brislawn C., “Kernels of trace class operators”, Proc. Am. Math. Soc., 104:4 (1988), 1181–1190 | DOI | MR | Zbl

[6] Iserless A., “On the generalized functional-differential equation”, Eur. J. Appl. Math., 4 (1993), 1–38 | DOI | MR

[7] Kato T., Mcleod J. B., “Functional-differential equation $y'=ay(\lambda t)+by(t)$”, Bull. Am. Math. Soc., 77:6 (1971), 891–937 | DOI | MR | Zbl