Criterion for the Volterra property of the Cauchy problem for the pantograph equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 140-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, spectral properties of the Cauchy problem of the pantograph equation are examined and the boundary of the parameter range is established at which the problem remains a Volterra problem.
Mots-clés : pantograph equation, Gaal formula.
Keywords: spectrum, complete continuity, nuclearity, Hilbert–Schmidt operator, operator trace formula
@article{INTO_2019_171_a12,
     author = {A. Sh. Shaldanbaev and M. I. Akylbaev and M. T. Shomanbayeva and A. A. Shaldanbayeva},
     title = {Criterion for the {Volterra} property of the {Cauchy} problem for the pantograph equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {140--145},
     year = {2019},
     volume = {171},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a12/}
}
TY  - JOUR
AU  - A. Sh. Shaldanbaev
AU  - M. I. Akylbaev
AU  - M. T. Shomanbayeva
AU  - A. A. Shaldanbayeva
TI  - Criterion for the Volterra property of the Cauchy problem for the pantograph equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 140
EP  - 145
VL  - 171
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_171_a12/
LA  - ru
ID  - INTO_2019_171_a12
ER  - 
%0 Journal Article
%A A. Sh. Shaldanbaev
%A M. I. Akylbaev
%A M. T. Shomanbayeva
%A A. A. Shaldanbayeva
%T Criterion for the Volterra property of the Cauchy problem for the pantograph equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 140-145
%V 171
%U http://geodesic.mathdoc.fr/item/INTO_2019_171_a12/
%G ru
%F INTO_2019_171_a12
A. Sh. Shaldanbaev; M. I. Akylbaev; M. T. Shomanbayeva; A. A. Shaldanbayeva. Criterion for the Volterra property of the Cauchy problem for the pantograph equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 140-145. http://geodesic.mathdoc.fr/item/INTO_2019_171_a12/

[1] Gokhberg N. Ts., Krein M. G., “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, Usp. mat. nauk, 12:2 (74) (1957) | Zbl

[2] Lidskii V. B., “Nesamosopryazhennye operatory, imeyuschie sled”, Dokl. AN SSSR., 125:3 (1959), 485–488

[3] Nersesyan A. B., “K teorii integralnykh uravnenii tipa Volterra”, Dokl. AN SSSR., 155:5 (1964), 1006–1009

[4] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, IL, M., 1954

[5] Brislawn C., “Kernels of trace class operators”, Proc. Am. Math. Soc., 104:4 (1988), 1181–1190 | DOI | MR | Zbl

[6] Iserless A., “On the generalized functional-differential equation”, Eur. J. Appl. Math., 4 (1993), 1–38 | DOI | MR

[7] Kato T., Mcleod J. B., “Functional-differential equation $y'=ay(\lambda t)+by(t)$”, Bull. Am. Math. Soc., 77:6 (1971), 891–937 | DOI | MR | Zbl