Support theorem for the Radon–Kipriyanov $K_\gamma$-transform
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 118-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The support theorem for the Radon transform was obtained by L. Helgason. The Radon transform of functions of groups of variables related by spherical symmetry is a special case of a more general transformation, namely, Radon–Kipriyanov transform $K_\gamma$. This transformation corresponds to a weight multi-index $\gamma=(\gamma_1,\ldots,\gamma_m)$ and coincides with Radon transform if all components of the multi-index $\gamma$ are natural numbers. In general, the $K_\gamma$-transformation can be interpreted as a transformation of functions of a fractional argument. In this paper, we prove a general support theorem. In a special case where $\gamma=0$, this theorem coincides with the Helgason theorem.
Mots-clés : Radon transform
Keywords: support theorem, Radon–Kipriyanov transform.
@article{INTO_2019_171_a10,
     author = {L. N. Lyakhov and M. G. Lapshina and S. A. Roshchupkin},
     title = {Support theorem for the {Radon{\textendash}Kipriyanov} $K_\gamma$-transform},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {118--124},
     year = {2019},
     volume = {171},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a10/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - M. G. Lapshina
AU  - S. A. Roshchupkin
TI  - Support theorem for the Radon–Kipriyanov $K_\gamma$-transform
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 118
EP  - 124
VL  - 171
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_171_a10/
LA  - ru
ID  - INTO_2019_171_a10
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A M. G. Lapshina
%A S. A. Roshchupkin
%T Support theorem for the Radon–Kipriyanov $K_\gamma$-transform
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 118-124
%V 171
%U http://geodesic.mathdoc.fr/item/INTO_2019_171_a10/
%G ru
%F INTO_2019_171_a10
L. N. Lyakhov; M. G. Lapshina; S. A. Roshchupkin. Support theorem for the Radon–Kipriyanov $K_\gamma$-transform. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 118-124. http://geodesic.mathdoc.fr/item/INTO_2019_171_a10/

[6] Gots E. G., Formuly obrascheniya preobrazovaniya Kipriyanova—Radona i analogi teoremy tipa Plansherelya i teoremy o nositele, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, VGU, Voronezh, 2006

[7] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997

[8] Kipriyanov I. A., Lyakhov L. N., “O preobrazovaniyakh Fure, Fure—Besselya i Radona”, Dokl. RAN., 360:2 (1998), 157–160 | MR | Zbl

[9] Levitan B. M., “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, Usp. mat. nauk, 6:2 (42) (1951), 102–143 | MR | Zbl

[10] Lyakhov L. N., “Obraschenie preobrazovaniya Kipriyanova—Radona”, Dokl. RAN., 399:5 (2004), 597–600 | MR

[11] Lyakhov L. N., “Preobrazovanie Kipriyanova—Radona”, Tr. Mat. in-ta im. V. A. Steklova RAN., 248 (2005), 153–163 | MR | Zbl

[12] Lyakhov L. N., “Preobrazovanie Radona—Kipriyanova obobschennogo sfericheskogo srednego znacheniya funktsii”, Mat. zametki., 100:1 (2016), 118–132 | DOI | MR | Zbl

[13] Lyakhov L. N., Lapshina M. G., “Obraschenie integralnykh operatsii s vesovoi ploskoi volnoi”, Probl. mat. anal., 84 (2016), 113–122

[14] Lyakhov L. N., Roschupkin S. A., Sanina E. L., “Sfericheskoe preobrazovanie obobschennogo sdviga Puassona i nekotorye svoistva vesovykh lebegovykh klassov funktsii”, Probl. mat. anal., 2017, no. 88, 87–95 | Zbl

[15] Sanina E. L., Roschupkin S. A., “O nositele funktsii s nulevym vesovym integralom po okruzhnosti ot obobschennogo sdviga Puassona”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2018, no. 4, 181-–185

[16] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR