Support theorem for the Radon--Kipriyanov $K_\gamma$-transform
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 118-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The support theorem for the Radon transform was obtained by L. Helgason. The Radon transform of functions of groups of variables related by spherical symmetry is a special case of a more general transformation, namely, Radon–Kipriyanov transform $K_\gamma$. This transformation corresponds to a weight multi-index $\gamma=(\gamma_1,\ldots,\gamma_m)$ and coincides with Radon transform if all components of the multi-index $\gamma$ are natural numbers. In general, the $K_\gamma$-transformation can be interpreted as a transformation of functions of a fractional argument. In this paper, we prove a general support theorem. In a special case where $\gamma=0$, this theorem coincides with the Helgason theorem.
Mots-clés : Radon transform
Keywords: support theorem, Radon–Kipriyanov transform.
@article{INTO_2019_171_a10,
     author = {L. N. Lyakhov and M. G. Lapshina and S. A. Roshchupkin},
     title = {Support theorem for the {Radon--Kipriyanov} $K_\gamma$-transform},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {118--124},
     publisher = {mathdoc},
     volume = {171},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a10/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - M. G. Lapshina
AU  - S. A. Roshchupkin
TI  - Support theorem for the Radon--Kipriyanov $K_\gamma$-transform
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 118
EP  - 124
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_171_a10/
LA  - ru
ID  - INTO_2019_171_a10
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A M. G. Lapshina
%A S. A. Roshchupkin
%T Support theorem for the Radon--Kipriyanov $K_\gamma$-transform
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 118-124
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_171_a10/
%G ru
%F INTO_2019_171_a10
L. N. Lyakhov; M. G. Lapshina; S. A. Roshchupkin. Support theorem for the Radon--Kipriyanov $K_\gamma$-transform. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 118-124. http://geodesic.mathdoc.fr/item/INTO_2019_171_a10/

[6] Gots E. G., Formuly obrascheniya preobrazovaniya Kipriyanova—Radona i analogi teoremy tipa Plansherelya i teoremy o nositele, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, VGU, Voronezh, 2006

[7] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997

[8] Kipriyanov I. A., Lyakhov L. N., “O preobrazovaniyakh Fure, Fure—Besselya i Radona”, Dokl. RAN., 360:2 (1998), 157–160 | MR | Zbl

[9] Levitan B. M., “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, Usp. mat. nauk, 6:2 (42) (1951), 102–143 | MR | Zbl

[10] Lyakhov L. N., “Obraschenie preobrazovaniya Kipriyanova—Radona”, Dokl. RAN., 399:5 (2004), 597–600 | MR

[11] Lyakhov L. N., “Preobrazovanie Kipriyanova—Radona”, Tr. Mat. in-ta im. V. A. Steklova RAN., 248 (2005), 153–163 | MR | Zbl

[12] Lyakhov L. N., “Preobrazovanie Radona—Kipriyanova obobschennogo sfericheskogo srednego znacheniya funktsii”, Mat. zametki., 100:1 (2016), 118–132 | DOI | MR | Zbl

[13] Lyakhov L. N., Lapshina M. G., “Obraschenie integralnykh operatsii s vesovoi ploskoi volnoi”, Probl. mat. anal., 84 (2016), 113–122

[14] Lyakhov L. N., Roschupkin S. A., Sanina E. L., “Sfericheskoe preobrazovanie obobschennogo sdviga Puassona i nekotorye svoistva vesovykh lebegovykh klassov funktsii”, Probl. mat. anal., 2017, no. 88, 87–95 | Zbl

[15] Sanina E. L., Roschupkin S. A., “O nositele funktsii s nulevym vesovym integralom po okruzhnosti ot obobschennogo sdviga Puassona”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2018, no. 4, 181-–185

[16] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR