Method of similar operators in the study of spectral properties of perturbed first-order differential operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we considers first-order differential operators with periodic boundary conditions acting in a Hilbert space of square summable functions on the segment $[0,\omega] $ perturbed by Hilbert–Schmidt integral operators. A similarity transformation of the original operator to the operator of the block-diagonal structure is performed; this allows one to study spectral properties of the perturbed operator. The research method is the method of similar operators, which also presented in this work.
Keywords: method of similar operators, spectrum, integro-differential operator.
@article{INTO_2019_171_a0,
     author = {A. G. Baskakov and I. A. Krishtal and N. B. Uskova},
     title = {Method of similar operators in the study of spectral properties of perturbed first-order differential operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {171},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_171_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - I. A. Krishtal
AU  - N. B. Uskova
TI  - Method of similar operators in the study of spectral properties of perturbed first-order differential operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 18
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_171_a0/
LA  - ru
ID  - INTO_2019_171_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A I. A. Krishtal
%A N. B. Uskova
%T Method of similar operators in the study of spectral properties of perturbed first-order differential operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-18
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_171_a0/
%G ru
%F INTO_2019_171_a0
A. G. Baskakov; I. A. Krishtal; N. B. Uskova. Method of similar operators in the study of spectral properties of perturbed first-order differential operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 2, Tome 171 (2019), pp. 3-18. http://geodesic.mathdoc.fr/item/INTO_2019_171_a0/

[1] Baskakov A. G., Zamena Krylova—Bogolyubova v teorii vozmuschenii lineinykh operatorov, Preprint IPM im. M. V. Keldysha, M., 1980

[2] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. mat. zh., 24:1 (1983), 21–39 | MR

[3] Baskakov A. G., “Zamena Krylova—Bogolyubova v teorii vozmuschenii lineinykh operatorov”, Ukr. mat. zh., 36 (1984), 601–611 | MR

[4] Baskakov A. G., “Metod usredneniya v teorii vozmuschenii lineinykh differentsialnykh operatorov”, Differ. uravn., 21:4 (1985), 555–562 | MR | Zbl

[5] Baskakov A. G., “Teorema o rasscheplenii operatora i nekotorye smezhnye voprosy analitieskoi teorii vozmuschenii”, Izv. AN SSSR. Ser. mat., 50:3 (1986), 435–457 | MR

[6] Baskakov A. G., Garmonicheskii analiz lineinykh operatorov, VGU, Voronezh, 1987

[7] Baskakov A. G., “Spektralnyi analiz vozmuschennykh nekvazianaliticheskikh i spekralnykh operatorov”, Izv. RAN. Ser. mat., 58:4 (1994), 3–32 | Zbl

[8] Baskakov A. G., “Ob abstraktnom analoge preobrazovaniya Krylova—Bogolyubova v teorii vozmuschenii lineinykh operatorov”, Funkts. anal. prilozh., 32:2 (1999), 76–80 | DOI

[9] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. mat., 75:3 (2011), 3–28 | DOI | MR | Zbl

[10] Baskakov A. G., Polyakov D. M., “Metod podobnykh operatorov v spektralnom analize operatora Khilla s negladkim potentsialom”, Mat. sb., 208:1 (2017), 3–47 | DOI | MR | Zbl

[11] Baskakov A. G., Uskova N. B., “Metod Fure dlya differentsialnykh uravnenii pervogo poryadka i gruppy operatorov”, Ufim. mat. zh., 10:3 (2018), 11–34 | MR

[12] Baskakov A. G., Uskova N. B., “Obobschennyi metod Fure dlya sistemy differentsialnykh uravnenii pervogo poryadka i gruppy operatorov”, Differ. uravn., 54:2 (2018), 276–280 | DOI | Zbl

[13] Baskakov A. G., Uskova N. B., “Spektralnyi analiz differentsialnykh operatorov s involyutsiei i gruppy operatorov”, Differ. uravn., 54:9 (2018), 1287–1291 | DOI | Zbl

[14] Burlutskaya M. Sh., “O smeshannoi zadache dlya uravneniya s chastnymi proizvodnymi pervogo poryadka s involyutsiei i s periodicheskimi kraevymi usloviyami”, Zh. vych. mat. mat. fiz., 54:1 (2014), 3–12 | DOI | MR | Zbl

[15] Burlutskaya M. Sh., Kurdyumov V. P., Lukonina A. S., Khromov A. P., “Funktsionalno-differentsialnyi operator s involyutsiei”, Dokl. RAN., 414:3 (2007), 443–446 | MR | Zbl

[16] Burlutskaya M. Sh., Khromov A. P., “Klassicheskoe reshenie dlya smeshannoi zadachi s involyutsiei”, Dokl. RAN., 435:2 (2010), 151–154 | MR | Zbl

[17] Burlutskaya M. Sh., Khromov A. P., “Metod Fure v smeshannoi zadachi dlya uravneniya s chastnymi proizvodnymi pervogo poryadka s involyutsiei”, Zh. vych. mat. mat. fiz., 51:12 (2011), 2233–2245 | MR

[18] Burlutskaya M. Sh., Khromov A. P., “Smeshannye zadachi dlya giperbolicheskikh uravnenii pervogo poryadka”, Dokl. RAN., 441:2 (2011), 156–159 | MR | Zbl

[19] Burlutskaya M. Sh., Khromov A. P., “Teorema Shteingauza o ravnoskhodimosti dlya funktsionalno-differentsialnykh operatorov”, Mat. zametki., 90:1 (2011), 22–33 | DOI | MR | Zbl

[20] Burlutskaya M. Sh., Khromov A. P., “Funktsionalno-differentsialnye operatory s involyutsiei i operatory Diraka s periodicheskimi kraevymi usloviyami”, Dokl. RAN., 454:1 (2014), 15–17 | DOI | MR | Zbl

[21] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[22] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[23] Uskova N. B., “K odnomu rezultatu R. Ternera”, Mat. zametki., 76:6 (2004), 905–917 | DOI | MR

[24] Baskakov A. G., Krishtal I. A., Romanova E. Yu., “Spectral analysis of a differential operator with an involution”, J. Evolut. Eqs., 17 (2017), 669–684 | DOI | MR | Zbl

[25] Baskakov A. G., Krishtal I. A., Uskova N. B., “Linear differential operator with an involution as a generator of an operator group”, J. Oper. Matr., 12:3 (2018), 723–756 | DOI | MR | Zbl

[26] Baskakov A. G., Krishtal I. A., Uskova N. B., General Dirac operators as generators of operator groups, arXiv: 1806.10831

[27] Baskakov A. G., Krishtal I. A., Uskova N. B., Similarity techniques in the spectral analysis of perturbed operator matrices, arXiv: 1812.10331

[28] Friedrichs K. O., Lectures on Advenced Ordinary Differential Equations, Gordon and Breach, New York, 1965 | MR

[29] Turner R. F. L., “Perturbation of compact spectral operators”, Commun. Pure. Appl. Math., 18 (1965), 519–541 | DOI | MR | Zbl