On optimal estimates of random variables
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 129-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of quasilinear, mean-square optimal estimates of random variables is indicated. Optimal correlation properties of the obtained estimates are established.
Keywords: optimal estimate of a random variable, quasilinear predictor, correlation analysis.
@article{INTO_2019_170_a8,
     author = {V. L. Khatskevich},
     title = {On optimal estimates of random variables},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {129--137},
     publisher = {mathdoc},
     volume = {170},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_170_a8/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - On optimal estimates of random variables
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 129
EP  - 137
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_170_a8/
LA  - ru
ID  - INTO_2019_170_a8
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T On optimal estimates of random variables
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 129-137
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_170_a8/
%G ru
%F INTO_2019_170_a8
V. L. Khatskevich. On optimal estimates of random variables. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 129-137. http://geodesic.mathdoc.fr/item/INTO_2019_170_a8/

[1] Shiryaev A. N., Veroyatnost, V 2-kh kn., v. 1, MTsNMO, M., 2007, 552 pp.

[2] Seber Dzh., Lineinyi regressionnyi analiz, Mir, M., 1980, 456 pp. | MR

[3] Linke Yu. Yu., Borisov I. S., “O postroenii yavnykh otsenok v zadachakh nelineinoi regressii”, Teoriya veroyatnostei i ee primeneniya, 63:1 (2018), 29–56 | DOI | MR | Zbl

[4] Ivchenko G. I., Medvedev Yu. I., Matematicheskaya statistika, Librokom, M., 2018, 352 pp. | MR

[5] Rozanov Yu. A., Teoriya veroyatnostei, sluchainye protsessy i matematicheskaya statistika, Nauka, M., 1989, 309 pp.

[6] Prokhorov A. V., Ushakov V. G., Ushakov N. G., Zadachi po teorii veroyatnostei, Izd. KDU, M., 2009, 328 pp.

[7] Khatskevich V. L., “O nekotorykh ekstremalnykh svoistvakh srednikh znachenii i matematicheskikh ozhidanii sluchainykh velichin”, Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 9:3.1 (2013), 39–44

[8] Seber G. A. F., Wild C. J., Nonlinear regression, Wiley Ser. Probab, NY, 2003, 768 pp. | MR

[9] Klemela J., Multivariate nonparametric regression and visualization: with R and applications to finance, Wiley, New Jersey, 2014, 699 pp. | MR | Zbl