Generalized Popoviciu expansions for Bernstein polynomials of a rational module
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 71-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that Bernstein polynomials for simple nonsmooth functions such as a rational module can be represented as special sums of a regular structure called “generalized Popoviciu decompositions.” To write generalized expansions, a certain formalism based on combinatorial calculations is developed. Based on the formulas obtained, we obtain a complete description of the convergence set of Bernstein polynomials of a rational module. The connection between the Popoviciu expansions and the distribution of zeros of Bernstein polynomials on the complex plane is discussed. In conclusion, a number of additional, new relations for Bernstein polynomials of a rational module are presented.
Keywords: Bernstein polynomial, piecewise linear function, generalized Popoviciu expansion, Kantorovich lemniscate
Mots-clés : rational module, domain of convergence, distribution of zeros of a polynomial.
@article{INTO_2019_170_a6,
     author = {I. V. Tikhonov and V. B. Sherstyukov and D. G. Tsvetkovich},
     title = {Generalized {Popoviciu} expansions for {Bernstein} polynomials of a rational module},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {71--117},
     publisher = {mathdoc},
     volume = {170},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_170_a6/}
}
TY  - JOUR
AU  - I. V. Tikhonov
AU  - V. B. Sherstyukov
AU  - D. G. Tsvetkovich
TI  - Generalized Popoviciu expansions for Bernstein polynomials of a rational module
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 71
EP  - 117
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_170_a6/
LA  - ru
ID  - INTO_2019_170_a6
ER  - 
%0 Journal Article
%A I. V. Tikhonov
%A V. B. Sherstyukov
%A D. G. Tsvetkovich
%T Generalized Popoviciu expansions for Bernstein polynomials of a rational module
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 71-117
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_170_a6/
%G ru
%F INTO_2019_170_a6
I. V. Tikhonov; V. B. Sherstyukov; D. G. Tsvetkovich. Generalized Popoviciu expansions for Bernstein polynomials of a rational module. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 71-117. http://geodesic.mathdoc.fr/item/INTO_2019_170_a6/

[1] Bernshtein S. N., “Sur la convergence de certaines suites de polynomes”, Sobranie sochinenii, v. 2, Konstruktivnaya teoriya funktsii [1931–1953], Izdatelstvo AN SSSR, 1954, 187–197 ; Bernstein S., Journal de Mathématiques Pures et Appliquées, 15 (1936), 345–358 | MR

[2] Bernshtein S. N., “O skhodimosti mnogochlenov $\sum_{n=0}^{m}\,C_n^m\,f(\frac{k}{m})\,x^m(1-x)^{n-m}$ v kompleksnoi oblasti”, Sobranie sochinenii, v. 2, Konstruktivnaya teoriya funktsii [1931–1953], Izdatelstvo AN SSSR, 1954, 310–348 ; Бернштейн С. Н., Известия АН СССР. Серия математическая, 7:2 (1943), 49–88 | MR

[3] Videnskii V. S., Mnogochleny Bernshteina, Uchebnoe posobie k spetskursu, LGPI im. A. I. Gertsena, L., 1990

[4] Goncharov V. L., Teoriya interpolirovaniya i priblizheniya funktsii, GITTL, M., 1954 | MR

[5] Graham R. L., Knuth D. E., Patashnik O., Concrete mathematics: a foundation for computer science, 2, Addison–Wesley, USA, 1998 | MR

[6] Ilin V. A., “O esche odnom vyvode formuly Stirlinga”, Matematika v vysshem obrazovanii, 2007, no. 5, 9–14

[7] Istoriya matematiki s drevneishikh vremen do nachala XIX stoletiya, v. 2, Matematika XVII stoletiya, ed. Yushkevich A. P., Nauka, M., 1970

[8] Kantorovich L. V., “O skhodimosti posledovatelnosti polinomov S. N. Bernshteina za predelami osnovnogo intervala”, Izvestiya AN SSSR. VII seriya. Otdelenie matematicheskikh i estestvennykh nauk, 1931, no. 8, 1103–1115

[9] Korovkin P. P., Lineinye operatory i teoriya priblizhenii, Fizmatgiz, M., 1959

[10] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 1, Nachala teorii, Nauka, M., 1967 | MR

[11] Montel P., Lecons sur les familles normales de fonctions analytiques et leurs applications, Gauthier—Villars, Paris, 1927 | Zbl

[12] Natanson I. P., Konstruktivnaya teoriya funktsii, GITTL, M., L., 1949 | MR

[13] Novikov I. Ya., “Asimptotika kornei polinomov Bernshteina, ispolzuemykh v postroenii modifitsirovannykh vspleskov Dobeshi”, Matematicheskie zametki, 71:2 (2002), 239–253 | DOI | MR | Zbl

[14] Petrosova M. A., “O nekotorykh sootnosheniyakh, svyazannykh s polinomami Bernshteina dlya ratsionalnogo modulya na simmetrichnom otrezke”, Nekotorye aktualnye problemy sovremennoi matematiki i matematicheskogo obrazovaniya, Gertsenovskie chteniya, Materialy nauchnoi konferentsii (09–13 aprelya 2018 g.), Izd. RGPU im. A. I. Gertsena, Sankt-Peterburg, 2018, 153-–157

[15] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 1, Ryady. Integralnoe ischislenie. Teoriya funktsii, Nauka, M., 1978; Polya G., Szego G., Aufgaben und Lehrsätze aus der Analysis, Berlin, Göttingen, Heidelberg ; Springer–Verlag, N.Y., 1964 | MR | Zbl

[16] Polischuk V. I., “O formule Stirlinga [Elektronnyi resurs]”, Matematika v VUZe: elektronnyi nauchnyi zhurnal, SPbGTU «Politekhnicheskii institut imperatora Petra Velikogo», SPb. http://goo.gl/8f3Txe

[17] Popov A. Yu., Dvustoronnie otsenki summ znachenii funktsii v tselykh tochkakh i ikh prilozheniya, Universitet goroda Pereslavlya, Pereslavl-Zalesskii, 2016

[18] Popov A. Yu., “Otsenka sverkhu ostatka stepennogo ryada s polozhitelnymi koeffitsientami spetsialnogo vida”, Chelyabinskii fiziko-matematicheskii zhurnal, 2:2 (2017), 193–198 | MR

[19] Titchmarsh E. C., The Theory of Functions, Oxford University Press, London, 1939 | MR | Zbl

[20] Tikhonov I. V., Sherstyukov V. B., “Priblizhenie modulya polinomami Bernshteina”, Vestnik Chelyabinskogo gosudarstvennogo universiteta. Matematika. Mekhanika. Informatika, 15:26 (2012), 6–40

[21] Tikhonov I. V., Sherstyukov V. B., “O povedenii koeffitsientov polinomov Bernshteina pri algebraicheskoi zapisi na standartnom otrezke”, Nekotorye aktualnye problemy sovremennoi matematiki i matematicheskogo obrazovaniya, Gertsenovskie chteniya, Materialy nauchnoi konferentsii (13–17 aprelya 2015 g.), Izd. RGPU im. A. I. Gertsena, Sankt-Peterburg, 2015, 115–121

[22] Tikhonov I. V., Sherstyukov V. B., “Polnyi analiz skhodimosti polinomov Bernshteina ot simmetrichnogo modulya”, V pechati, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya «Matematika. Mekhanika. Informatika», 2019

[23] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Polinomy Bernshteina: staroe i novoe”, Issledovaniya po matematicheskomu analizu, v. 8, Matematicheskii forum, 1, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 126–175

[24] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Pravilo skleivaniya dlya polinomov Bernshteina na simmetrichnom otrezke”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya «Matematika. Mekhanika. Informatika», 15:3 (2015), 288–300 | Zbl

[25] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Polinomy Bernshteina dlya standartnogo modulya na simmetrichnom otrezke”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya «Matematika. Mekhanika. Informatika», 16:4 (2016), 425–435 | MR

[26] Tikhonov I. V., Sherstyukov V. B., Tsvetkovich D. G., “Spetsialnye zadachi dlya polinomov Bernshteina v kompleksnoi oblasti”, Differentsialnye uravneniya i protsessy upravleniya, Nekotorye aktualnye problemy sovremennoi matematiki i matematicheskogo obrazovaniya, Materialy konferentsii. Gertsenovskie chteniya — 2016, 2, 2016, 166–174

[27] Tikhonov I. V., Tsvetkovich D. G., Sherstyukov V. B., “Kompyuternoe issledovanie attraktorov nulei dlya klassicheskikh polinomov Bernshteina”, Fundamentalnaya i prikladnaya matematika, 21:4 (2016), 151–173 | MR

[28] Tikhonov I. V., Sherstyukov V. B., Tsvetkovich D. G., “Chto takoe attraktory nulei dlya klassicheskikh polinomov Bernshteina”, Nekotorye aktualnye problemy sovremennoi matematiki i matematicheskogo obrazovaniya, Gertsenovskie chteniya — 2017, Materialy nauchnoi konferentsii (10–14 aprelya 2017 g.), Izd. RGPU im. A. I. Gertsena, Sankt-Peterburg, 2017, 150–160

[29] Tikhonov I. V., Sherstyukov V. B., Tsvetkovich D. G., “Ob odnom metode dlya nakhozhdeniya oblasti skhodimosti polinomov Bernshteina v kompleksnoi ploskosti”, Nekotorye aktualnye problemy sovremennoi matematiki i matematicheskogo obrazovaniya, Gertsenovskie chteniya — 2018, Materialy nauchnoi konferentsii (09–13 aprelya 2018 g.), Izd. RGPU im. A. I. Gertsena, Sankt-Peterburg, 2018, 145–-153

[30] Fikhtengolts G. M., Osnovy matematicheskogo analiza, v. 2, Nauka, M., 1968

[31] Tsvetkovich D. G., Tikhonov I. V., Sherstyukov V. B., “Spetsialnye predstavleniya dlya polinomov Bernshteina ot ratsionalnogo modulya na standartnom otrezke”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Nauchnaya kniga, Saratov, 2018, 339–342

[32] Tsvetkovich D. G., “Osobye strukturirovannye predstavleniya dlya polinomov Bernshteina ot ratsionalnogo modulya”, Sistemy kompyuternoi matematiki i ikh prilozheniya, materialy XIX Mezhdunarodnoi nauchnoi konferentsii, posvyaschennoi 100-letiyu fiziko-matematicheskogo fakulteta SmolGU, 19, SmolGU, Smolensk, 2018, 347–353

[33] Tsvetkovich D. G., “Podrobnyi atlas attraktorov nulei dlya klassicheskikh polinomov Bernshteina”, Chelyabinskii fiziko-matematicheskii zhurnal, 3:1 (2018), 58–89 | MR

[34] Aramă O., “Rroprientăţi privind monotonia şirului polinoamelor de interpolare ale lui S. N. Bernstein şi aplicarea lor la studiul aproximării funcţiilor”, Studii şi cercetări de Matematică (Cluj), 8:3–4 (1957), 195–210

[35] Bojanich R., Cheng F., “Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation”, Journal of Mathematical Analysis and Applications, 141:1 (1989), 136–151 | DOI | MR

[36] Bustamante J., Bernstein operators and their properties, Birkhäuser, 2017 | MR | Zbl

[37] Davis P. J., Interpolation and approximation, Dover, N.Y., 1975 | MR | Zbl

[38] DeVore R. A., Lorentz G. G., Constructive approximation, Springer-Verlag, Berlin, Heidelberg, N.Y., 1993 | MR | Zbl

[39] Diaconis P., Zabell S., “Closed form summation for classical distributions: variations on a theme of de Moivre”, Statistical Science, 6:3 (1991), 284–302 | DOI | MR | Zbl

[40] Dvoretzky A., “On the theorem of Jentzsch”, Proceedings of the National Academy of Sciences of the USA, 35 (1949), 246–252 | DOI | MR | Zbl

[41] Fowler D., “The binomial coefficient function”, American Mathematical Monthly, 103:1 (1996), 1–17 | DOI | MR | Zbl

[42] Gal S. G., Approximation by complex Bernstein and convolution type operators, Series on Concrete and Applicable Mathematics, 8, World Scientific, New Jersey, London, Singapore, 2009 | DOI | MR | Zbl

[43] Gehlen W., Luh W., “On the sharpness of Jentzsch–Szegö -Type Theorems”, Archiv der Mathematik, 63 (1994), 33–38 | DOI | MR | Zbl

[44] Izumi S., “On the distribution of the zero points of sections of a power series”, Japanese Journal of Mathematic, 4 (1927), 29–32 | DOI | Zbl

[45] Jentzsch R., “Untersuchungen zur theorie der folgen analytischer funktionen”, Acta Mathematica, 41 (1918), 219–251 | DOI | MR

[46] Knuth D. E., Vardi I., “The asymptotic expansion of the middle binomial coefficient”, American Mathematical Monthly, 97:7 (1996), 629–630 | MR

[47] Kocić Lj. M., Della Veccia B., “Degeneracy of positive linear operators”, Facta Universitatis (Nis̆). Series: Mathematics and Informatics, 13 (1998), 59–72 | MR | Zbl

[48] Landau E., Gaier D., Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, 3, Berlin, Heidelberg, N.Y. ; Springer, London, Tokyo, 1986 | MR | Zbl

[49] Lorentz G. G., Bernstein polynomials, University of Toronto Press, Toronto, 1953 | MR | Zbl

[50] Passow E., “Some unusual Bernstein polynomials”, Approximation Theory IV, Proceedings of the International Symposium on Approximation Theory Held at Texas A University, College Station (Texas, on January 10–14, 1983), eds. Chui C. K., Larry L. Schumaker, Ward J. D., Academic Press, N.Y., London, 1983, 649–652 | MR

[51] Passow E., “Deficient Bernstein polynomials”, Journal of Approximation Theory, 59:3 (1989), 282–285 | DOI | MR | Zbl

[52] Phillips G. M., Interpolation and approximation by polynomials, Springer, N.Y., Berlin, Heidelberg, 2003 | MR | Zbl

[53] Popoviciu T., “Sur l'approximation des fonctions convexes d'ordre supérieur”, Mathematica, 10 (1935), 49–54 | MR

[54] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, Clarendon Press, Oxford, 2002 | MR

[55] Rodney E., “Problem 10310”, American Mathematical Monthly, 100:5 (1993), 499; Rodney E., “Solution problem 10310”, American Mathematical Monthly, 103:5 (1996), 431–432 | DOI | MR

[56] Sasvári Z., “Inequalties for binomial coefficients”, Journal of Mathematical Analysis and Applications, 236:1 (1999), 223–226 | DOI | MR | Zbl

[57] Schoenberg I. J., “On variation diminishing approximation methods”, On numerical approximation, Proceedings of a symposium conducted by the Mathematics Research Center US Army (University of Wisconsin, Madison, April 21–23, 1958), ed. Langer R. E., University of Wiskonsin Press, Madison, 1959, 249–274 | MR

[58] Stănică P., “Good lower and upper bounds on binomial coefficients”, Journal of Inequalities in Pure and Applied Mathematics, 2:3 (2001), 1–5 | MR | Zbl

[59] Temple W. B., “Stieltjes integral representation of convex functions”, Duke Mathematical Journal, 21:3 (1954), 527–531 | DOI | MR | Zbl

[60] Vallée Poussin Charles de la, “On the approximation of functions of a real variable and on quasi-analytic functions. A course of three lectures delivered at the Rice Institute, December 16, 17 and 19, 1924”, The Rice Institute Pamhlet, 12:2 (1925), 105–172

[61] Wright E. M., “The Bernstein approximation polynomials in the complex plane”, Journal of the London Mathematical Society, 5:4 (1930), 265–269 | DOI | MR | Zbl