On distributions almost periodic at infinity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 51-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of slowly varying and almost periodic at infinity distributions from harmonic spaces; a number of spaces of homogeneous function are considered. The notion of a harmonic space of distributions is introduced; this space is constructed by a homogeneous functional spaces. Properties of harmonic spaces of distributions endowed with the structure of Banach modules are studied. Each such a space is proved to be isometrically isomorphic to the corresponding homogeneous functional space. Based on the definitions of slowly varying and almost periodic at infinity functions from a homogeneous space, we introduce the notions of slowly varying and almost periodic at infinity distributions from a harmonic space. Using methods of abstract harmonic analysis, we construct Fourier series of almost periodic distributions at infinity and obtain their properties. In this paper, we essentially used results of the theory of isometric representations and the theory of Banach modules.
Keywords: distribution of slow growth, distribution almost periodic at infinity, distribution slowly varying at infinity, homogeneous space, Banach module, almost periodic vector, Fourier series.
@article{INTO_2019_170_a4,
     author = {V. E. Strukov},
     title = {On distributions almost periodic at infinity},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {51--61},
     publisher = {mathdoc},
     volume = {170},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_170_a4/}
}
TY  - JOUR
AU  - V. E. Strukov
TI  - On distributions almost periodic at infinity
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 51
EP  - 61
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_170_a4/
LA  - ru
ID  - INTO_2019_170_a4
ER  - 
%0 Journal Article
%A V. E. Strukov
%T On distributions almost periodic at infinity
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 51-61
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_170_a4/
%G ru
%F INTO_2019_170_a4
V. E. Strukov. On distributions almost periodic at infinity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 51-61. http://geodesic.mathdoc.fr/item/INTO_2019_170_a4/

[1] Baskakov A. G., Garmonicheskii analiz v banakhovykh modulyakh i spektralnaya teoriya lineinykh operatorov, Izd. dom VGU, Voronezh, 2016

[2] Baskakov A. G., “Garmonicheskii i spektralnyi analiz operatorov s ogranichennymi stepenyami i ogranichennykh polugrupp operatorov na banakhovom prostranstve”, Matem. zametki, 97:2 (2015), 174–190 | DOI | Zbl

[3] Baskakov A. G., “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1 (2013), 77–128 | DOI | MR | Zbl

[4] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, SMFN, 9 (2004), 3–151 | Zbl

[5] Baskakov A. G., “Spektralnye kriterii pochti periodichnosti reshenii funktsionalnykh uravnenii”, Matem. zametki, 24:2 (1978), 195–206

[6] Baskakov A. G., Nekotorye voprosy teorii vektornykh pochti periodicheskikh funktsii, Diss. kand. fiz.-mat. nauk, VGU, Voronezh, 1973

[7] Baskakov A. G., Krishtal I. A., “Garmonicheskii analiz kauzalnykh operatorov i ikh spektralnye svoistva”, Izv. RAN. Seriya matem., 69:3 (2005), 3–54 | DOI | MR | Zbl

[8] Baskakov A. G., Strukova I. I., Trishina I. A., “Pochti periodicheskie na beskonechnosti resheniya differentsialnykh uravnenii s neogranichennymi operatornymi koeffitsientami”, Sib. matem. zhurn., 59:2 (2018), 293–308 | MR | Zbl

[9] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[10] Levitan B. M., Pochti-periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978

[11] Ross K., Khyuitt E., Abstraktnyi garmonicheskii analiz, v. 2, Mir, M., 1975

[12] Strukov V. E., Strukova I. I., “O medlenno menyayuschikhsya i periodicheskikh na beskonechnosti funktsiyakh iz odnorodnykh prostranstv i garmonichnykh raspredeleniyakh”, Vestn. VGU. Seriya: Fizika. Matematika, 2018, no. 4, 195–205

[13] Strukov V. E., Strukova I. I., “O chetyrekh opredeleniyakh pochti periodicheskoi na beskonechnosti funktsii iz odnorodnogo prostranstva”, Nauchnye vedomosti BelGU. Ser. Matematika. Fizika, 50:3 (2018), 254–264

[14] Strukova I. I., “Garmonicheskii analiz periodicheskikh na beskonechnosti funktsii v odnorodnykh prostranstvakh”, Vestnik VolGU. Ser. 1. Matematika. Fizika, 2017, no. 2 (39), 29–38 | MR

[15] Strukova I. I., “O teoreme Vinera dlya periodicheskikh na beskonechnosti funktsii”, Sib. matem. zhurn., 57:1 (2016), 186–198 | MR | Zbl

[16] Strukova I. I., “Spektry algebr medlenno menyayuschikhsya i periodicheskikh na beskonechnosti funktsii i banakhovy predely”, Vestn. VGU. Seriya: Fizika. Matematika, 2015, no. 3, 161–165 | Zbl

[17] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser, Basel, 2011 | MR | Zbl

[18] Baskakov A. G., Krishtal I. A., “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterranean Journal of Mathematics, 13:5 (2016), 2443–2462 | DOI | MR | Zbl

[19] Baskakov A., Strukova I., “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | MR