Generalized Riemann problem on the breakup of a discontinuity with additional conditions at the boundary and its application for constructing computational algorithms
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 38-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for an approximate solution of the generalized Riemann problem on the breakup of a discontinuity under additional conditions at the boundaries, which allows one to reduce the problem of finding the values of variables on both sides of the discontinuity surface of the initial data to the solution of a system of algebraic equations. We construct a computational algorithm for an approximate solution of the initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The algorithm is implemented for a system of equations of elastic dynamics; it is used for solving some applied problems associated with oil production.
Keywords: breakup of a discontinuity, hyperbolic system, generalized function, Cauchy problem, Green matrix-function, characteristic, equation of elastic dynamics.
Mots-clés : conjugation condition, Riemann invariant
@article{INTO_2019_170_a3,
     author = {Yu. I. Skalko and S. Yu. Gridnev},
     title = {Generalized {Riemann} problem on the breakup of a discontinuity with additional conditions at the boundary and its application for constructing computational algorithms},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {38--50},
     publisher = {mathdoc},
     volume = {170},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_170_a3/}
}
TY  - JOUR
AU  - Yu. I. Skalko
AU  - S. Yu. Gridnev
TI  - Generalized Riemann problem on the breakup of a discontinuity with additional conditions at the boundary and its application for constructing computational algorithms
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 38
EP  - 50
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_170_a3/
LA  - ru
ID  - INTO_2019_170_a3
ER  - 
%0 Journal Article
%A Yu. I. Skalko
%A S. Yu. Gridnev
%T Generalized Riemann problem on the breakup of a discontinuity with additional conditions at the boundary and its application for constructing computational algorithms
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 38-50
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_170_a3/
%G ru
%F INTO_2019_170_a3
Yu. I. Skalko; S. Yu. Gridnev. Generalized Riemann problem on the breakup of a discontinuity with additional conditions at the boundary and its application for constructing computational algorithms. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 38-50. http://geodesic.mathdoc.fr/item/INTO_2019_170_a3/

[1] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, Moskva, 1981

[2] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1958

[3] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, Moskva, 1959

[4] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, Moskva, 1958 | MR

[5] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, Moskva, 2001

[6] Skalko Yu. I., “Zadacha Rimana o raspade razryva v sluchae mnogikh prostranstvennykh peremennykh”, Trudy MFTI, 8:4 (2016), 169–182

[7] Skalko Yu. I., “Korrektnye usloviya na granitse, razdelyayuschei podoblasti”, Kompyuternye issledovaniya i modelirovanie, 6:3 (2014), 347–356

[8] LeVeque R. L., Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[9] Kaser M., Dumbser M., “An Arbitrary High Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes - I. The Two-Dimensional Isotropic Case with External Source Terms”, Geophys. J. Int., 166 (2006), 855–877 | DOI