On properties of Riemannian metrics associated with $B$-elliptic operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a Riemannian metric in which the Laplace–Beltrami operator coincides with a $B$-elliptic operator up to a factor.
Keywords: $B$-elliptic operator, Riemannian metric, Laplace–Beltrami operator, isometry group, Killing conditions, Lobachevsky geometry.
@article{INTO_2019_170_a2,
     author = {M. V. Polovinkina and I. P. Polovinkin},
     title = {On properties of {Riemannian} metrics associated with $B$-elliptic operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {170},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_170_a2/}
}
TY  - JOUR
AU  - M. V. Polovinkina
AU  - I. P. Polovinkin
TI  - On properties of Riemannian metrics associated with $B$-elliptic operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 31
EP  - 37
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_170_a2/
LA  - ru
ID  - INTO_2019_170_a2
ER  - 
%0 Journal Article
%A M. V. Polovinkina
%A I. P. Polovinkin
%T On properties of Riemannian metrics associated with $B$-elliptic operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 31-37
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_170_a2/
%G ru
%F INTO_2019_170_a2
M. V. Polovinkina; I. P. Polovinkin. On properties of Riemannian metrics associated with $B$-elliptic operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh Winter Mathematical School "Modern Methods of Function Theory and Related Problems." January 28 – February 2, 2019. Part 1, Tome 170 (2019), pp. 31-37. http://geodesic.mathdoc.fr/item/INTO_2019_170_a2/

[1] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR

[2] Ilin V. A., “O ryadakh Fure po fundamentalnym sistemam funktsii operatora Beltrami”, Differentsialnye uravneniya, 5:11 (1969), 1940–1978 | MR | Zbl

[3] Katrakhov V. V., Sitnik S. M., “Metod preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovremennaya matematika. Fundamentalnye napravleniya, 64, no. 2, 2018, 211–426 | MR

[4] Kipriyanov I. A., “Preobrazovanie Fure-Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. MIRAN, 89, 1967, 130–213 | Zbl

[5] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997, 199 pp.

[6] Lyakhov L. N., Vesovye sfericheskie funktsii i potentsialy Rissa, porozhdennye obobschennym sdvigom, VGTA, Voronezh, 1997, 144 pp.

[7] Feller V., “O resheniyakh lineinykh diferentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka ellipticheskogo tipa”, Uspekhi matematicheskikh nauk, 1941, no. 8, 232–-248

[8] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964, 534 pp.

[9] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987, 736 pp. | MR

[10] Eizenkhart L. T., Rimanova geometriya, Gosudarstvennoe izdatelstvo inostrannoi literatury, M., 1948, 316 pp.