Special cases of hyperbolic parallelograms on the Lobachevsky plane
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 39-47
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we consider particular cases of hyperbolic parallelograms obtained by transferring to the Lobachevsky plane of characteristic properties of rectangles and squares on the Euclidean plane associated with their diagonals. The existence of these quadrangles in the Cayley–Klein model in a circle of the Euclidean plane is proved.
Keywords:
Lobachevsky plane, Cayley–Klein model, hyperbolic parallelogram, hyperbolic rhombus.
@article{INTO_2019_169_a5,
author = {M. S. Maskina and M. I. kuptsov},
title = {Special cases of hyperbolic parallelograms on the {Lobachevsky} plane},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {39--47},
year = {2019},
volume = {169},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a5/}
}
TY - JOUR AU - M. S. Maskina AU - M. I. kuptsov TI - Special cases of hyperbolic parallelograms on the Lobachevsky plane JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 39 EP - 47 VL - 169 UR - http://geodesic.mathdoc.fr/item/INTO_2019_169_a5/ LA - ru ID - INTO_2019_169_a5 ER -
%0 Journal Article %A M. S. Maskina %A M. I. kuptsov %T Special cases of hyperbolic parallelograms on the Lobachevsky plane %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 39-47 %V 169 %U http://geodesic.mathdoc.fr/item/INTO_2019_169_a5/ %G ru %F INTO_2019_169_a5
M. S. Maskina; M. I. kuptsov. Special cases of hyperbolic parallelograms on the Lobachevsky plane. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 39-47. http://geodesic.mathdoc.fr/item/INTO_2019_169_a5/
[2] Atanasyan L. S., Geometriya Lobachevskogo, Prosveschenie, M., 2001
[3] Atanasyan L. S., Bazylev V. T., Geometriya, Prosveschenie, M., 1987
[4] Kagan V. F., Osnovaniya geometrii, GITTL, M.-L., 1949
[5] Lobachevskii N. I., Polnoe sobranie sochinenii v 3 tomakh, GITTL, M.-L., 1951 | MR
[6] Maskina M. S., Obuchenie dokazatelstvu matematicheski odarennykh uchaschikhsya na fakultativnykh kursakh, Diss. na soisk. uch. step. kand. ped. nauk, Mordov. gos. ped. in-t im. M. E. Evseveva, Saransk, 2003