Evolutes of meridians and asymptotic on pseudospheres
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 23-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, some general properties of asymptotic lines on pseudospheres of the Euclidean and Minkowski space are studied and relationships between asymptotic lines and, respectively, Euclidean and pseudo-Euclidean evolutes of meridians on pseudospheres are found.
Keywords: pseudosphere, asymptotic line, evolute, Lobachevsky plane, de Sitter plane.
@article{INTO_2019_169_a3,
     author = {A. V. Kostin},
     title = {Evolutes of meridians and asymptotic on pseudospheres},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {23--30},
     publisher = {mathdoc},
     volume = {169},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a3/}
}
TY  - JOUR
AU  - A. V. Kostin
TI  - Evolutes of meridians and asymptotic on pseudospheres
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 23
EP  - 30
VL  - 169
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_169_a3/
LA  - ru
ID  - INTO_2019_169_a3
ER  - 
%0 Journal Article
%A A. V. Kostin
%T Evolutes of meridians and asymptotic on pseudospheres
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 23-30
%V 169
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_169_a3/
%G ru
%F INTO_2019_169_a3
A. V. Kostin. Evolutes of meridians and asymptotic on pseudospheres. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 23-30. http://geodesic.mathdoc.fr/item/INTO_2019_169_a3/

[1] Vygodskii M. Ya., Differentsialnaya geometriya, GITTL, M.-L., 1949

[2] Galeeva R. F., Sokolov D. D., “O geometricheskoi interpretatsii reshenii nekotorykh uravnenii matematicheskoi fiziki”, Issledovaniya po teorii poverkhnostei v rimanovykh prostranstvakh, LGPI, L., 1984, 8–22 | MR

[3] Kagan V. F., Osnovy teorii povernostei v tenzornom izlozhenii, v. 2, Poverkhnosti v prostranstve. Otobrazheniya i izgibaniya poverkhnostei. Spetsialnye voprosy, GITTL, M.-L., 1948 | MR

[4] Kostin A. V., “Regulyarnost asimptoticheskikh linii na psevdosferakh de Sittera”, Dni geometrii v Novosibirske–2012, Tez. Mezhdunar. konf., posv. 100-letiyu so dnya rozhdeniya A. D. Aleksandrova, In-t mat. im. S. L. Soboleva SO RAN, Novosibirsk, 2012, 48–49

[5] Kostin A. V., Kostina N. N., “Ob evolyutakh nekotorykh krivykh na psevdoevklidovoi ploskosti”, Trudy Mezhdunarodnoi shkoly-seminara po geometrii i analizu pamyati N. V. Efimova, Abrau-Dyurso, 2004, 34–35

[6] Kostin A. V., Kostina N. N., “Ob interpretatsii asimptoticheskikh napravlenii”, Tr. Mezhdunar. shkoly-seminara «Sovremennaya geometriya i ee prilozheniya», Izd-vo Kazan. un-ta, Kazan, 2017, 75–76

[7] Poznyak E. G., Popov A. G., “Geometriya uravneniya sin-Gordona”, Itogi nauki i tekhn. Probl. geom., 23, VINITI, M., 1991, 99–130 | MR

[8] Popov A. G., Maevskii E. V., “Analiticheskie podkhody k issledovaniyu uravneniya sin-Gordona”, Sovr. mat. prilozh., 23 (2005), 13–52

[9] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969

[10] Shirokov P. A., “Interpretatsiya i metrika kvadratichnykh geometrii”, Izbrannye raboty po geometrii, Izd-vo Kazan. un-ta, Kazan, 1966, 15–179 | MR

[11] Chern S. S., “Geometrical interpretation of sinh-Gordon equation”, Ann. Polon. Math., 39 (1981), 63–69 | DOI | MR | Zbl

[12] Hesse L. O., “Über ein Übertragungsprinzip”, J. Reine Angew. Math., 66 (1866), 15–21 | MR | Zbl

[13] Imaizumi T., “Maximal surfaces with simple ends”, Kyushi J. Math., 57 (2004), 59–70 | DOI | MR

[14] Kobayashi O., “Maximal surfaces in the 3-dimensional Minkovski space $L^3$”, Tokyo J. Math., 6 (1983), 297–309 | DOI | MR | Zbl

[15] Kobayashi O., “Maximal surfaces with conelike singularities”, J. Math. Soc. Jpn., 36 (1984), 609–617 | DOI | MR | Zbl