Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_169_a1, author = {D. S. Klimentov}, title = {Stochastic criterion for $k$-motion of a regular surface of nonzero mean and sign-constant gaussian curvatures in three-dimensional {Euclidean} space}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {11--16}, publisher = {mathdoc}, volume = {169}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a1/} }
TY - JOUR AU - D. S. Klimentov TI - Stochastic criterion for $k$-motion of a regular surface of nonzero mean and sign-constant gaussian curvatures in three-dimensional Euclidean space JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 11 EP - 16 VL - 169 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_169_a1/ LA - ru ID - INTO_2019_169_a1 ER -
%0 Journal Article %A D. S. Klimentov %T Stochastic criterion for $k$-motion of a regular surface of nonzero mean and sign-constant gaussian curvatures in three-dimensional Euclidean space %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 11-16 %V 169 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_169_a1/ %G ru %F INTO_2019_169_a1
D. S. Klimentov. Stochastic criterion for $k$-motion of a regular surface of nonzero mean and sign-constant gaussian curvatures in three-dimensional Euclidean space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 11-16. http://geodesic.mathdoc.fr/item/INTO_2019_169_a1/
[1] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986
[2] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988
[3] Dynkin E. B., Markovskie protsessy, Fizmatlit, M., 1963
[4] Kagan V. F., Osnovy teorii poverkhnostei, OGIZ, M., 1947
[5] Klimentov S. B., Vvedenie v teoriyu izgibanii. Dvumernye poverkhnosti v trekhmernom evklidovom prostranstve, Izd-vo YuFU, Rostov-na-Donu, 2014
[6] Klimentov D. S., “Stokhasticheskii analog osnovnoi teoremy teorii poverkhnostei dlya poverkhnostei nenulevoi srednei krivizny”, Izv. vuzov. Sev.-Kav. reg., 2014, no. 1, 63–67
[7] Klimentov D. S., “Stokhasticheskii kriterii $k$-dvizheniya regulyarnoi poverkhnosti polozhitelnoi gaussovoi krivizny v trekhmernom evklidovom prostranstve”, Izv. vuzov. Sev.-Kav. reg., 2015, no. 4, 63–68
[8] Rashevskii P. K., Kurs differentsialnoi geometrii, GONTI, M., 1939 | MR