Stochastic criterion for $k$-motion of a regular surface of nonzero mean and sign-constant gaussian curvatures in three-dimensional Euclidean space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 11-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain a stochastic criterion for the $k$-motion of a regular two-dimensional surface in three-dimensional Euclidean space—a stochastic analog of the main theorem of bending theory.
Keywords: surface bending, stochastic process.
@article{INTO_2019_169_a1,
     author = {D. S. Klimentov},
     title = {Stochastic criterion for $k$-motion of a regular surface of nonzero mean and sign-constant gaussian curvatures in three-dimensional {Euclidean} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {11--16},
     publisher = {mathdoc},
     volume = {169},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a1/}
}
TY  - JOUR
AU  - D. S. Klimentov
TI  - Stochastic criterion for $k$-motion of a regular surface of nonzero mean and sign-constant gaussian curvatures in three-dimensional Euclidean space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 11
EP  - 16
VL  - 169
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_169_a1/
LA  - ru
ID  - INTO_2019_169_a1
ER  - 
%0 Journal Article
%A D. S. Klimentov
%T Stochastic criterion for $k$-motion of a regular surface of nonzero mean and sign-constant gaussian curvatures in three-dimensional Euclidean space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 11-16
%V 169
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_169_a1/
%G ru
%F INTO_2019_169_a1
D. S. Klimentov. Stochastic criterion for $k$-motion of a regular surface of nonzero mean and sign-constant gaussian curvatures in three-dimensional Euclidean space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 11-16. http://geodesic.mathdoc.fr/item/INTO_2019_169_a1/

[1] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986

[2] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988

[3] Dynkin E. B., Markovskie protsessy, Fizmatlit, M., 1963

[4] Kagan V. F., Osnovy teorii poverkhnostei, OGIZ, M., 1947

[5] Klimentov S. B., Vvedenie v teoriyu izgibanii. Dvumernye poverkhnosti v trekhmernom evklidovom prostranstve, Izd-vo YuFU, Rostov-na-Donu, 2014

[6] Klimentov D. S., “Stokhasticheskii analog osnovnoi teoremy teorii poverkhnostei dlya poverkhnostei nenulevoi srednei krivizny”, Izv. vuzov. Sev.-Kav. reg., 2014, no. 1, 63–67

[7] Klimentov D. S., “Stokhasticheskii kriterii $k$-dvizheniya regulyarnoi poverkhnosti polozhitelnoi gaussovoi krivizny v trekhmernom evklidovom prostranstve”, Izv. vuzov. Sev.-Kav. reg., 2015, no. 4, 63–68

[8] Rashevskii P. K., Kurs differentsialnoi geometrii, GONTI, M., 1939 | MR