On submanifolds with a parallel normal vector field in spaces of constant curvature
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe normal vector fields of a special form along geodesic lines on $n$-dimensional submanifolds of $(n+p)$-dimensional spaces of constant curvature, in particular, fields of normal curvature and normal torsion of a submanifold at a point in a given direction. We study submanifolds such that these normal vector fields are parallel in the normal connection along their geodesic lines.
Keywords: submanifold, space of constant curvature, second fundamental form, normal vector field, normal curvature vector
Mots-clés : normal torsion vector.
@article{INTO_2019_169_a0,
     author = {I. I. Bodrenko},
     title = {On submanifolds with a parallel normal vector field in spaces of constant curvature},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {169},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_169_a0/}
}
TY  - JOUR
AU  - I. I. Bodrenko
TI  - On submanifolds with a parallel normal vector field in spaces of constant curvature
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 3
EP  - 10
VL  - 169
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_169_a0/
LA  - ru
ID  - INTO_2019_169_a0
ER  - 
%0 Journal Article
%A I. I. Bodrenko
%T On submanifolds with a parallel normal vector field in spaces of constant curvature
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 3-10
%V 169
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_169_a0/
%G ru
%F INTO_2019_169_a0
I. I. Bodrenko. On submanifolds with a parallel normal vector field in spaces of constant curvature. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 2, Tome 169 (2019), pp. 3-10. http://geodesic.mathdoc.fr/item/INTO_2019_169_a0/

[1] Bodrenko I. I., “O podmnogoobraziyakh s nulevym normalnym krucheniem v evklidovom prostranstve”, Sib. mat. zh., 35:3 (1994), 527–536 | MR | Zbl

[2] Bodrenko I. I., “Parallelnye polya normalnykh $q$-napravlenii na psevdorekurrentnykh podmnogoobraziyakh”, Vestn. Volgograd. gos. un-ta. Ser. 1. Mat. Fiz., 2002, no. 7, 5–11

[3] Bodrenko I. I., “Nekotorye svoistva kelerovykh podmnogoobrazii s rekurrentnymi tenzornymi polyami”, Vestn. Volgograd. gos. un-ta. Ser. 1. Mat. Fiz., 10:1 (2006), 11–21

[4] Bodrenko I. I., “Podmnogoobraziya s rekurrentnoi vtoroi fundamentalnoi formoi v prostranstvakh postoyannoi krivizny”, Obozr. prikl. prom. mat., 14:4 (2007), 679–682

[5] Bodrenko I. I., “O giperpoverkhnostyakh s tsiklicheski rekurrentnoi vtoroi fundamentalnoi formoi v evklidovom prostranstve”, Vestn. Volgograd. gos. un-ta. Ser. 1. Mat. Fiz., 2010, no. 13, 23–35

[6] Bodrenko I. I., “O podmnogoobraziyakh s tsiklicheski rekurrentnoi vtoroi fundamentalnoi formoi v evklidovykh prostranstvakh”, Obozr. prikl. prom. mat., 18:5 (2011), 746

[7] Bodrenko I. I., “Stroenie podmnogoobrazii s tsiklicheski rekurrentnoi vtoroi fundamentalnoi formoi v evklidovom prostranstve”, Vestn. Volgograd. gos. un-ta. Ser. 1. Mat. Fiz., 2011, no. 1 (14), 10–17

[8] Bodrenko I. I., “Ob analoge poverkhnostei Darbu v mnogomernykh evklidovykh prostranstvakh”, Vestn. Volgograd. gos. un-ta. Ser. 1. Mat. Fiz., 2013, no. 1 (18), 24–30

[9] Bodrenko I. I., Obobschennye poverkhnosti Darbu v prostranstvakh postoyannoi krivizny, LAP LAMBERT, Saarbrücken, 2013

[10] Bodrenko I. I., “Nekotorye svoistva normalnykh sechenii i geodezicheskikh na tsiklicheski rekurrentnykh podmnogoobraziyakh”, Vestn. Volgograd. gos. un-ta. Ser. 1. Mat. Fiz., 2014, no. 2 (21), 6–16

[11] Bodrenko I. I., “Obobschenie teoremy Bonne o poverkhnostyakh Darbu”, Mat. zametki., 95:6 (2014), 812–820 | DOI | MR | Zbl

[12] Bodrenko I. I., “O podmnogoobraziyakh s nulevym vektorom normalnogo krucheniya v prostranstvakh postoyannoi krivizny”, Lomonosovskie chteniya na Altae. Fundamentalnye problemy nauki i obrazovaniya, Altaisk. gos. un-t, Barnaul, 2015, 461–465

[13] Fomenko V. T., “Nekotorye svoistva dvumernykh poverkhnostei s nulevym normalnym krucheniem v $E^4$”, Mat. sb., 106 (148):4 (8) (1978), 589–603 | MR | Zbl

[14] Fomenko V. T., “Ob odnom obobschenii poverkhnostei Darbu”, Mat. zametki., 48:2 (1990), 107–113

[15] Fomenko V. T., “Dvumernye poverkhnosti s ploskoi normalnoi svyaznostyu v prostranstve postoyannoi krivizny, nesuschie geodezicheskie postoyannoi krivizny”, Mat. zametki., 68:4 (2000), 579–586 | DOI | Zbl

[16] Fomenko V. T., “Klassifikatsiya dvumernykh poverkhnostei s nulevym normalnym krucheniem v chetyrekhmernom prostranstve postoyannoi krivizny”, Mat. zametki., 75:5 (2004), 744–756 | DOI | MR | Zbl