Hidden synchronization in phase locked loop systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 71-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the analysis of frequency-phase locked loop systems (FPLL). The mathematical model of this system is a system of differential equations with a cylindrical phase space. For the FPLL system, we obtain conditions of latent synchronization.
Keywords: hidden synchronization, frequency-phase locked loop, limit cycle of the first kind, beat mode, positively invariant set, rotation of a vector field.
Mots-clés : quasisynchronous mode
@article{INTO_2019_168_a8,
     author = {S. S. Mamonov and I. V. Ionova and A. O. Harlamova},
     title = {Hidden synchronization in phase locked loop systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {71--79},
     publisher = {mathdoc},
     volume = {168},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a8/}
}
TY  - JOUR
AU  - S. S. Mamonov
AU  - I. V. Ionova
AU  - A. O. Harlamova
TI  - Hidden synchronization in phase locked loop systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 71
EP  - 79
VL  - 168
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_168_a8/
LA  - ru
ID  - INTO_2019_168_a8
ER  - 
%0 Journal Article
%A S. S. Mamonov
%A I. V. Ionova
%A A. O. Harlamova
%T Hidden synchronization in phase locked loop systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 71-79
%V 168
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_168_a8/
%G ru
%F INTO_2019_168_a8
S. S. Mamonov; I. V. Ionova; A. O. Harlamova. Hidden synchronization in phase locked loop systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 71-79. http://geodesic.mathdoc.fr/item/INTO_2019_168_a8/

[1] Bakunov G. M., Matrosov V. V., Shalfeev V. D., “O kvazisinkhronnykh rezhimakh v sisteme fazovoi avtopodstroiki chastoty s filtrom vtorogo poryadka pri priblizhennom uchete zapazdyvaniya”, Izv. vuzov. Prikl. nelin. dinam., 19:3 (2011), 171–178 | Zbl

[2] Beskerskii V. A., Popov E. P., Teoriya sistem avtomaticheskogo regulirovaniya, Nauka, M., 1972

[3] Kapranov M. V., Kulishov V. N., Utkin G. M., Teoriya kolebanii v radiotekhnike, Nauka, M., 1984

[4] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR

[5] Leonov G. A., Burkin I. M., Shepelyavyi A. I., Chastotnye metody v teorii kolebanii, Izd-vo SPbGU, SPb., 1992 | MR

[6] Mamonov S. S., “Dinamika sistemy chastotno-fazovoi avtopodstroiki chastoty s filtrami pervogo poryadka”, Vestn. Novosib. gos. un-ta. Ser. Mat. Mekh. Inform., 11:1 (2011), 70–81 | MR | Zbl

[7] Mamonov S. S., Ionova I. V., “Primenenie vrascheniya vektornogo polya dlya opredeleniya tsiklov vtorogo roda”, Vestn. RAEN. Differ. uravn., 14:5 (2014), 46–54

[8] Mamonov S. S., Kharlamova A. O., “Otdelenie tsiklov vtorogo roda sistemy chastotno-fazovoi avtopodstroiki chastoty”, Vestn. RAEN. Differ. uravn., 15:3 (2015), 97–102

[9] Mamonov S. S., Kharlamova A. O., “Kvazisinkhronnye rezhimy fazovoi sistemy”, Vestn. Ryazan. gos. radiotekhn. un-ta., 2016, no. 56, 45–51

[10] Mamonov S. S., Kharlamova A. O., “Opredelenie uslovii suschestvovaiya predelnykh tsiklov pervogo roda sistem s tsilindricheskim fazovym prostranstvom”, Zh. Srednevolzh. mat. o-va., 19:1 (2017), 67–76 | MR | Zbl

[11] Mamonov S. S., Kharlamova A. O., “Vynuzhdennaya sinkhronizatsiya sistem fazovoi avtopodstroiki s zapazdyvaniem”, Vestn. Ryazan. gos. radiotekhn. un-ta., 62 (2017), 26–35

[12] Mamonov S. S., Kharlamova A. O., “Chislenno-analiticheskoe opredelenie tsiklov pervogo roda fazovoi sistemy differentsialnykh uravnenii”, Vestn. RAEN. Differ. uravn., 17:4 (2017), 48–56 | MR

[13] Mamonov S. S., Kharlamova A. O., “Tsikly pervogo roda sistem s tsilindricheskim fazovym prostranstvom”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 148 (2018), 83–92 | MR

[14] Mamonov S. S., Kharlamova A. O., Ionova I. V., “Kolebatelno-vraschatelnye tsikly fazovoi sistemy differentsialnykh uravnenii”, Vestn. RAEN. Differ. uravn., 18:4 (2018), 51–57

[15] Matrosov V. V., Vynuzhdennaya sinkhronizatsiya, N. Novgorod, 2013

[16] Shalfeev V. D., Matrosov V. V., Nelineinaya dinamika v radiotekhnike, Izd-vo NNGU, N. Novgorod, 2013