Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_168_a6, author = {D. A. Kulikov}, title = {Dynamics of coupled {Van} der {Pol} oscillators}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {53--60}, publisher = {mathdoc}, volume = {168}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a6/} }
TY - JOUR AU - D. A. Kulikov TI - Dynamics of coupled Van der Pol oscillators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 53 EP - 60 VL - 168 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_168_a6/ LA - ru ID - INTO_2019_168_a6 ER -
D. A. Kulikov. Dynamics of coupled Van der Pol oscillators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 53-60. http://geodesic.mathdoc.fr/item/INTO_2019_168_a6/
[1] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[2] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differ. uravn., 39:5 (2003), 584–601 | MR | Zbl
[3] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa otobrazhenii: sokhranenie tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–752 | MR
[4] Kuznetsov A. P., Paksyutov V. I., “O dinamike dvukh slabosvyazannykh ostsillyatorov Van der Polya—Duffinga s dissipativnoi svyazyu”, Izv. vuzov. Prikl. nelin. dinam., 11:6 (2003), 48–63
[5] Kuznetsov A. P., Tyuryukina L. V., Sataev I. R., Chernyshov N. Yu., “Sinkhronizatsiya i mnogochastotnye kolebaniya v nizkorazmernykh ansamblyakh ostsillyatorov”, Izv. vuzov. Prikl. nelin. dinam., 22:1 (2014), 27–54 | Zbl
[6] Kulikov D. A., “Avtomodelnye periodicheskie resheniya i bifurkatsii ot nikh v zadache o vzaimodeistvii dvukh slabosvyazannykh ostsillyatorov”, Izv. vuzov. Prikl. nelin. dinam., 14:5 (2006), 120–132 | Zbl
[7] Kulikov D. A., “Tsikly bilokalnoi modeli volnovogo uravneniya: polnyi analiz”, Sovrem. probl. mat. inform., 4 (2001), 93–96
[8] Kulikov D. A., “Issledovanie dinamiki bilokalnoi modeli nelineinykh volnovykh uravnenii”, Sovrem. probl. mat. inform., 5 (2002), 46–52
[9] Kulikov D. A., Attraktory uravneniya Ginzburga—Landau i ego konechnomernogo analoga, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, 2006
[10] Pikovskii A., Rozenblyum M., Kurtts Yu., Sinkhronizatsiya. Fundamentalnoe yavlenie, Tekhnosfera, M., 2003
[11] Kulikov D. A., “Self-similar cycles and their local bifurcations in the problem of two weakly coupled oscillators”, J. Appl. Math. Mech., 74:4 (2010), 389–400 | DOI | MR | Zbl