On certain operator families
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose an abstract scheme for the study of special operators and apply this scheme to examining elliptic pseudodifferential operators and related boundary-value problems on manifolds with nonsmooth boundaries. In particular, we consider cases where boundaries may contain conical points, edges of various dimensions, and even peak points. Using the constructions proposed, we present well-posed formulations of boundary-value problems for elliptic pseudo-differential equations on manifolds discussed in Sobolev–Slobodecky spaces.
Keywords: local-type operator, operator symbol, ellipticity, Fredholm property, index, pseudodifferential operator.
@article{INTO_2019_168_a3,
     author = {V. B. Vasil'ev (Vasilyev)},
     title = {On certain operator families},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {168},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a3/}
}
TY  - JOUR
AU  - V. B. Vasil'ev (Vasilyev)
TI  - On certain operator families
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 26
EP  - 32
VL  - 168
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_168_a3/
LA  - ru
ID  - INTO_2019_168_a3
ER  - 
%0 Journal Article
%A V. B. Vasil'ev (Vasilyev)
%T On certain operator families
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 26-32
%V 168
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_168_a3/
%G ru
%F INTO_2019_168_a3
V. B. Vasil'ev (Vasilyev). On certain operator families. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 26-32. http://geodesic.mathdoc.fr/item/INTO_2019_168_a3/

[1] Vasilev V. B., “Regulyarizatsiya mnogomernykh singulyarnykh integralnykh uravnenii v negladkikh oblastyakh”, Tr. Mosk. mat. o-va., 59 (1998), 73–105 | Zbl

[2] Vasilev V. B., Multiplikatory integralov Fure, psevdodifferentsialnye uravneniya, volnovaya faktorizatsiya, kraevye zadachi, URSS, M., 2010

[3] Vasilev V. B., “Modelnye ellipticheskie kraevye zadachi dlya psevdodifferentsialnykh uravnenii v kanonicheskikh negladkikh oblastyakh”, Tr. semin. im. I. G. Petrovskogo., 31 (2016), 3–16

[4] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[5] Plamenevskii B. A., “Razreshimost algebry psevdodifferentsialnykh operatorov s kusochno gladkimi koeffitsientami na gladkom mnogoobrazii”, Algebra i analiz., 21:2 (2009), 214–263

[6] Sili R. T., “Integrodifferentsialnye operatory na vektornykh rassloeniyakh”, Matematika., 11:2 (1968), 57–97

[7] Simonenko I. B., Lokalnyi metod v teorii invariantnykh otnositelno sdviga operatorov i ikh ogibayuschikh, TsVVR, Rostov-na-Donu, 2007

[8] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[9] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973

[10] Dynin A. S., “Inversion problem for singular integral operators: $C^*$-approach”, Proc. Natl. Acad. Sci. USA., 75 (1978), 4668–4670 | DOI | MR | Zbl

[11] Kottke C., Melrose R. B., “Generalized blow-up of corners and fiber products”, Trans. Am. Math. Soc., 367:1 (2015), 651–705 | DOI | MR | Zbl

[12] Nazaikinskii V., Schulze B. W., Sternin B., The localization problem in index theory of elliptic operators. Pseudo-Differential Operators. Theory and Applications, Birkhäuser, Basel, 2014 | MR

[13] Nistor V., “Analysis on singular spaces: Lie manifolds and operator algebras”, J. Geom. Phys., 105 (2016), 75–101 | DOI | MR | Zbl

[14] Schulze B. W., Sternin B., Shatalov V., Differential Equations on Singular Manifolds: Semiclassical Theory and Operator Algebras, Wiley, Berlin, 1998 | MR | Zbl

[15] Vasilyev V. B., “Asymptotical analysis of singularities for pseudo differential equations in canonical nonsmooth domains”, Integral Methods in Science and Engineering. Computational and Analytic Aspects, eds. Constanda C., Harris P. J., Birkhäuser, Boston, 2011, 379–390 | MR