Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_168_a3, author = {V. B. Vasil'ev (Vasilyev)}, title = {On certain operator families}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {26--32}, publisher = {mathdoc}, volume = {168}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a3/} }
TY - JOUR AU - V. B. Vasil'ev (Vasilyev) TI - On certain operator families JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 26 EP - 32 VL - 168 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_168_a3/ LA - ru ID - INTO_2019_168_a3 ER -
V. B. Vasil'ev (Vasilyev). On certain operator families. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 26-32. http://geodesic.mathdoc.fr/item/INTO_2019_168_a3/
[1] Vasilev V. B., “Regulyarizatsiya mnogomernykh singulyarnykh integralnykh uravnenii v negladkikh oblastyakh”, Tr. Mosk. mat. o-va., 59 (1998), 73–105 | Zbl
[2] Vasilev V. B., Multiplikatory integralov Fure, psevdodifferentsialnye uravneniya, volnovaya faktorizatsiya, kraevye zadachi, URSS, M., 2010
[3] Vasilev V. B., “Modelnye ellipticheskie kraevye zadachi dlya psevdodifferentsialnykh uravnenii v kanonicheskikh negladkikh oblastyakh”, Tr. semin. im. I. G. Petrovskogo., 31 (2016), 3–16
[4] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[5] Plamenevskii B. A., “Razreshimost algebry psevdodifferentsialnykh operatorov s kusochno gladkimi koeffitsientami na gladkom mnogoobrazii”, Algebra i analiz., 21:2 (2009), 214–263
[6] Sili R. T., “Integrodifferentsialnye operatory na vektornykh rassloeniyakh”, Matematika., 11:2 (1968), 57–97
[7] Simonenko I. B., Lokalnyi metod v teorii invariantnykh otnositelno sdviga operatorov i ikh ogibayuschikh, TsVVR, Rostov-na-Donu, 2007
[8] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970
[9] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973
[10] Dynin A. S., “Inversion problem for singular integral operators: $C^*$-approach”, Proc. Natl. Acad. Sci. USA., 75 (1978), 4668–4670 | DOI | MR | Zbl
[11] Kottke C., Melrose R. B., “Generalized blow-up of corners and fiber products”, Trans. Am. Math. Soc., 367:1 (2015), 651–705 | DOI | MR | Zbl
[12] Nazaikinskii V., Schulze B. W., Sternin B., The localization problem in index theory of elliptic operators. Pseudo-Differential Operators. Theory and Applications, Birkhäuser, Basel, 2014 | MR
[13] Nistor V., “Analysis on singular spaces: Lie manifolds and operator algebras”, J. Geom. Phys., 105 (2016), 75–101 | DOI | MR | Zbl
[14] Schulze B. W., Sternin B., Shatalov V., Differential Equations on Singular Manifolds: Semiclassical Theory and Operator Algebras, Wiley, Berlin, 1998 | MR | Zbl
[15] Vasilyev V. B., “Asymptotical analysis of singularities for pseudo differential equations in canonical nonsmooth domains”, Integral Methods in Science and Engineering. Computational and Analytic Aspects, eds. Constanda C., Harris P. J., Birkhäuser, Boston, 2011, 379–390 | MR