Control of a discrete dynamic system with noise
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 105-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a discrete dynamic controlled system with noise, we consider the problem of retaining a phase point in a given family of sets at discrete instants of time. We analyze the case where the control vectogram is a polyhedron defined by a system of linear inequalities. We prove some properties of specific polyhedra satisfying the linearity condition, which allows us to obtain a condition of retention in the explicit form. Necessary and sufficient conditions for the possibility of retention are given. The results obtained are illustrated by an example.
Keywords: discrete system, multi-step control problem, polyhedron of control values.
@article{INTO_2019_168_a12,
     author = {V. I. Ukhobotov and S. A. Nikitina},
     title = {Control of a discrete dynamic system with noise},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {105--113},
     publisher = {mathdoc},
     volume = {168},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a12/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
AU  - S. A. Nikitina
TI  - Control of a discrete dynamic system with noise
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 105
EP  - 113
VL  - 168
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_168_a12/
LA  - ru
ID  - INTO_2019_168_a12
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%A S. A. Nikitina
%T Control of a discrete dynamic system with noise
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 105-113
%V 168
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_168_a12/
%G ru
%F INTO_2019_168_a12
V. I. Ukhobotov; S. A. Nikitina. Control of a discrete dynamic system with noise. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 105-113. http://geodesic.mathdoc.fr/item/INTO_2019_168_a12/

[1] Pontryagin L. S., “Lineinye differentsialnye igry. II”, Dokl. AN SSSR., 175:4 (1967), 764–766 | MR | Zbl

[2] Propoi A. I., Elementy teorii optimalnykh diskretnykh protsessov, Nauka, M., 1973

[3] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Mir, M., 1980 | MR

[4] Ukhobotov V. I., “K postroeniyu stabilnykh mostov”, Prikl. mat. mekh., 44:5 (1980), 934–938 | MR

[5] Ukhobotov V. I., “K postroeniyu stabilnogo mosta v igre uderzhaniya”, Prikl. mat. mekh., 45:2 (1981), 236–240 | MR | Zbl

[6] Ukhobotov V. I., “Differentsialnaya igra uderzhaniya”, Tekhn. kibern., 22:3 (1984), 53–59 | MR | Zbl

[7] Ukhobotov V. I., Nikitina S. A., “Stabilnyi most dlya odnoi dekompozitsionnoi differentsialnoi igry”, Vestn. Chelyab. gos. un-ta. Ser. Mat. Mekh. Inform., 1 (7) (2003), 99–107 | MR

[8] Ukhobotov V. I., Nikitina S. A., “Postroenie garantirovannogo upravleniya v kvazilineinykh sistemakh”, Tr. in-ta mat. mekh. UrO RAN., 11:1 (2005), 201–211 | MR

[9] Ukhobotov V. I., Stabulit I. S., “Dinamicheskaya zadacha upravleniya pri nalichii pomekhi i s zadannym mnozhestvom momentov korrektsii”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 28:1 (2018), 74–81 | MR | Zbl

[10] Shorikov A. F., “Algoritm adaptivnogo minimaksnogo upravleniya dlya protsessa presledovaniya-ukloneniya v diskretnykh sistemakh”, Tr. in-ta mat. mekh. UrO RAN., 6:2 (2000), 515–535 | MR