Stability and asymptotically periodic solutions of hybrid systems with aftereffect
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 91-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study hybrid linear systems of functional differential equations with aftereffect using the Azbelev $W$-method. Two model equations are considered and Banach spaces of right-hand sides and solutions, which are spaces of asymptotically periodic functions, are examined. Analogs of the Bohl–Perron theorem on the asymptotic stability and on the existence of limits of solutions are obtained.
Keywords: Bohl–Perron theorem, asymptotically periodic functions, hybrid system, functional differential equation, equation with aftereffect, stability, method of model equations.
@article{INTO_2019_168_a10,
     author = {P. M. Simonov},
     title = {Stability and asymptotically periodic solutions of hybrid systems with aftereffect},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {91--98},
     publisher = {mathdoc},
     volume = {168},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_168_a10/}
}
TY  - JOUR
AU  - P. M. Simonov
TI  - Stability and asymptotically periodic solutions of hybrid systems with aftereffect
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 91
EP  - 98
VL  - 168
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_168_a10/
LA  - ru
ID  - INTO_2019_168_a10
ER  - 
%0 Journal Article
%A P. M. Simonov
%T Stability and asymptotically periodic solutions of hybrid systems with aftereffect
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 91-98
%V 168
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_168_a10/
%G ru
%F INTO_2019_168_a10
P. M. Simonov. Stability and asymptotically periodic solutions of hybrid systems with aftereffect. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Geometric Methods in Control Theory and Mathematical Physics" dedicated to the 70th anniversary of S.L. Atanasyan, the 70th anniversary of I.S. Krasilshchik, the 70th anniversary of A.V. Samokhin, and the 80th anniversary of V.T. Fomenko. S.A. Esenin Ryazan State University, Ryazan, September 25–28, 2018. Part 1, Tome 168 (2019), pp. 91-98. http://geodesic.mathdoc.fr/item/INTO_2019_168_a10/

[1] Azbelev N. V., Berezanskii L. M., Simonov P. M., Chistyakov A. V., “Ustoichivost lineinykh sistem s posledeistviem. II”, Differ. uravn., 27:4 (1991), 555–562 | MR | Zbl

[2] Azbelev N. V., Berezanskii L. M., Simonov P. M., Chistyakov A. V., “Ustoichivost lineinykh sistem s posledeistviem. III”, Differ. uravn., 27:10 (1991), 1659–1668 | MR

[3] Azbelev N. V., Berezanskii L. M., Simonov P. M., Chistyakov A. V., “Ustoichivost lineinykh sistem s posledeistviem. IV”, Differ. uravn., 29:2 (1993), 196–204 | MR | Zbl

[4] Azbelev N. V., Simonov P. M., Ustoichivost reshenii uravnenii s obyknovennymi proizvodnymi, Perm. un-t, Perm, 2001

[5] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967 | MR

[6] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970

[7] Domoshnitskii A. I., Drakhlin M. E., “O periodicheskikh resheniyakh funktsionalno-differentsialnykh uravnenii”, Dokl. semin. In-ta prikl. mat. im. I. N. Vekua, 3:3 (1988), 54–57

[8] Drakhlin M. E., “Odin priznak suschestvovaniya asimptoticheski periodicheskikh reshenii”, Funktstonalno-differentsialnye uravneniya, Mezhvuz. sb. nauch. tr., Perm. politekhn. in-t, Perm, 1990, 168–170 | Zbl

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nevskii Dialekt, SPb., 2004

[10] Krein M. G., “O nekotorykh voprosakh, svyazannykh s krugom idei Lyapunova v teorii ustoichivosti”, Usp. mat. nauk., 3:3 (25) (1948), 166–169 | MR

[11] Massera Kh. L., Sheffer Kh. Kh., Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970

[12] Pulyaev V. F., “O dopustimosti nekotorykh par prostranstv otnositelno lineinykh integralnykh uravnenii Volterra”, Differ. uravn., 20:10 (1984), 1800–1805 | MR | Zbl

[13] Pulyaev V. F., “O spektre lineinykh nepreryvnykh operatorov”, Izv. Sev.-Kav. nauch. tsentra vyssh. shkoly. Estestv. nauki., 1985, no. 4, 25–28 | MR | Zbl

[14] Simonov P. M., “Teorema Bolya—Perrona dlya gibridnykh lineinykh sistem s posledeistviem”, Vestn. Perm. un-ta. Mat. Mekh. Inform., 2016, no. 2 (33), 56–60

[15] Simonov P. M., “K voprosu o teoreme Bolya—Perrona dlya gibridnykh lineinykh funktsionalno-differentsialnykh sistem s posledeistviem”, Zh. Srednevolzh. mat. o-va., 18:1 (2016), 75–81 | Zbl

[16] Simonov P. M., “Teorema Bolya—Perrona dlya gibridnykh lineinykh sistem s posledeistviem”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obzory., 132 (2017), 122–126

[17] Simonov P. M., “Teorema Bolya—Perrona ob asimptoticheskoi ustoichivosti dlya gibridnykh lineinykh funktsionalno-differentsialnykh sistem s posledeistviem”, Vestn. RAEN. Differ. uravn., 16:3 (2016), 55–59

[18] Simonov P. M., “Teorema Bolya—Perrona ob asimptoticheskoi ustoichivosti gibridnykh sistem”, Funktsionalno-differentsialnye uravneniya: teoriya i prilozheniya, Mat. konf., posv. 95-letiyu so dnya rozhd. prof. N. V. Azbeleva (Perm, 17–19 maya 2017 g.), Perm, 2018, 230–235

[19] Simonov P. M., “Teorema Bolya—Perrona i obratnaya k nei ob asimtoticheskoi ustoichivosti dlya gibridnykh lineinykh sistem s posledeistviem”, Vestn. Perm. un-ta. Mat. Mekh. Inform., 2:41 (2018), 38–43

[20] Simonov P. M., “Teorema Bolya—Perrona ob asimptoticheski periodicheskikh resheniyakh dlya gibridnykh lineinykh funktsionalno-differentsialnykh sistem s posledeistviem”, Vestn. RAEN. Differ. uravn., 18:4 (2018), 58–64

[21] Sokol D. G., “O dopustimosti nekotorykh par prostranstv dlya integralnykh operatorov i uravnenii”, Izv. vuzov. Sev.-Kav. reg. Estestv. nauki., 1 (2000), 135–137 | Zbl

[22] Tsalyuk Z. B., “Integralnye uravneniya Volterra”, Mat. analiz, Itogi nauki i tekhn., 15, VINITI, M., 1977, 131–198

[23] Tsalyuk Z. B., “O dopustimosti nekotorykh par prostranstv dlya integralnykh operatorov i uravnenii Volterra”, Differ. uravn., 13:11 (1977), 2096–2098 | MR | Zbl

[24] Simonov P. M., “The Bohl–Perron theorem for hybrid linear systems with aftereffect”, J. Math. Sci., 230:5 (2018), 775–781 | DOI | MR | Zbl