Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2019_167_a9, author = {K. U. Khubiev}, title = {Boundary-value problem for a loaded hyperbolic-parabolic equation with degeneration of order}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {112--116}, publisher = {mathdoc}, volume = {167}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a9/} }
TY - JOUR AU - K. U. Khubiev TI - Boundary-value problem for a loaded hyperbolic-parabolic equation with degeneration of order JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2019 SP - 112 EP - 116 VL - 167 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2019_167_a9/ LA - ru ID - INTO_2019_167_a9 ER -
%0 Journal Article %A K. U. Khubiev %T Boundary-value problem for a loaded hyperbolic-parabolic equation with degeneration of order %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2019 %P 112-116 %V 167 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2019_167_a9/ %G ru %F INTO_2019_167_a9
K. U. Khubiev. Boundary-value problem for a loaded hyperbolic-parabolic equation with degeneration of order. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 112-116. http://geodesic.mathdoc.fr/item/INTO_2019_167_a9/
[1] Attaev A. Kh., “O nekotorykh zadachakh dlya nagruzhennogo differentsialnogo uravneniya v chastnykh proizvodnykh pervogo poryadka”, Vestn. KRAUNTs. Fiz.-mat. nauki., 4-1 (16) (2016), 9–14 | MR | Zbl
[2] Gekkieva S. Kh., Kraevye zadachi dlya nagruzhennykh parabolicheskikh uravnenii s drobnoi proizvodnoi po vremeni, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, NII PMA KBNTs RAN, Nalchik, 2003
[3] Gekkieva S. Kh., “Smeshannye kraevye zadachi dlya nagruzhennogo diffuzionno-volnovogo uravneniya”, Nauch. ved. Belgorod. gos. un-ta. Ser. mat. fiz., 42:1 (12) 6 (227) (2016), 32–35
[4] Dzhenaliev M. T., Ramazanov M. I., Nagruzhennye uravneniya kak vozmuscheniya differentsialnykh uravnenii, Almaty, 2010
[5] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995
[6] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[7] Nakhushev A. M., Nagruzhennye uravneniya i ikh primeneniya, Nauka, M., 2012
[8] Pskhu A. V., “Reshenie pervoi kraevoi zadachi dlya uravneniya diffuzii drobnogo poryadka”, Differ. uravn., 39:9 (2003), 1286–1289 | MR | Zbl
[9] Repin O. A., “Kraevaya zadacha dlya differentsialnogo uravneniya s chastnoi drobnoi proizvodnoi Rimana—Liuvillya”, Ufimsk. mat. zh., 7:3 (2015), 70–75
[10] Tarasenko A. V., “O razreshimosti nelokalnoi zadachi dlya nagruzhennogo parabolo-giperbolicheskogo uravneniya”, Izv. vuzov. Mat., 3 (2018), 62–69 | Zbl
[11] Tarasenko A. V., Egorova I. P., “O nelokalnoi zadache s drobnoi proizvodnoi Rimana—Liuvillya dlya uravneniya smeshannogo tipa”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-mat. nauki., 21:1 (2017), 112–121 | DOI | Zbl
[12] Khubiev K. U., “Analog zadachi Trikomi dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s drobnoi proizvodnoi pri nagruzke”, Dokl. Adygsk. (Cherkessk.) Mezhdunar. akad. nauk., 17:3 (2015), 54–59
[13] Khubiev K. U., “Vnutrennekraevaya zadacha dlya uravneniya giperbolo-parabolicheskogo tipa s operatorom drobnoi diffuzii”, Nauch. ved. Belgorod. gos. un-ta. Ser. mat. fiz., 49:27 (276) (2017), 52–56
[14] Khubiev K. U., “Zadachi so smescheniem dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s operatorom drobnoi diffuzii”, Vestn. Udmurtsk. un-ta. Mat. Mekh. Kompyut. nauki., 28:1 (2018), 82–90 | MR | Zbl
[15] Khubiev K. U., “Kraevaya zadacha dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s vyrozhdeniem poryadka v oblasti ego giperbolichnosti”, Itogi nauki i tekhn. Sovr. mat. prilozh. Tematich. obzory., 149 (2018), 113–117 | MR
[16] Abdullaev O. Kh., “On a problem for the loaded mixed type equation with fractional derivative”, \Russian Vestn. KRAUNTs. Fiz.-mat. nauki., 1 (12) (2016), 7–14 | MR | Zbl
[17] Abdullaev O. Kh., Sadarangani K. B., “Nonlocal problem with integral gluing conditions for loaded mixed type equations involving the Caputo fractional derivate”, Electron. J. Differ. Equations., 164 (2016), 1–10 | MR
[18] Attaev A. Kh., “The Cauchy problem for for the McKendrick–von Foerster loaded equation”, Int. J. Pure Appl. Math., 113:4 (2017), 47–52
[19] Baltaeva U., “Solvability of the analogs of the problem Tricomi for the mixed type loaded equations with parabolic-hyperbolic operators”, Boundary-Value Problems., 1 (2014), 211–222 | DOI | MR
[20] Islomov B., Ochilova N. K., “About a problem for the degenerating mixed type equation fractional derivative”, \Russian Vestn. KRAUNTs. Fiz.-mat. nauki., 1 (17) (2017), 22–32 | MR | Zbl
[21] Kadirkulov B. J., “Boundary problems for mixed parabolic-hyperbolic equations with two lines of changing type and fractional derivative”, Electron. J. Differ. Equations., 57 (2014), 1–7 | MR
[22] Karimov E. T., Akhatov J. S., “A boundary problem with integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional derivative”, Electron. J. Differ. Equations., 14 (2014), 1–6 | MR