Inverse linear problems for a certain class of degenerate fractional evolution equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 97-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the unique solvability of linear inverse coefficient problems with a time-independent unknown coefficient for evolution equations in Banach spaces with degenerate operators acting on the Gerasimov–Caputo fractional derivative. We apply abstract results obtained in the paper to the study of inverse problems with undetermined coefficients depending only on spatial variables for equations with polynomials on a self-adjoint, elliptic differential operator with respect to spatial variables. Also, we apply general results to the study of the unique solvability of inverse problems for time-fractional Sobolev systems.
Mots-clés : inverse coefficient problem
Keywords: degenerate evolution equation, Gerasimov–Caputo fractional derivative.
@article{INTO_2019_167_a8,
     author = {V. E. Fedorov and A. V. Nagumanova},
     title = {Inverse linear problems for a certain class of degenerate fractional evolution equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {167},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a8/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - A. V. Nagumanova
TI  - Inverse linear problems for a certain class of degenerate fractional evolution equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 97
EP  - 111
VL  - 167
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_167_a8/
LA  - ru
ID  - INTO_2019_167_a8
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A A. V. Nagumanova
%T Inverse linear problems for a certain class of degenerate fractional evolution equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 97-111
%V 167
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_167_a8/
%G ru
%F INTO_2019_167_a8
V. E. Fedorov; A. V. Nagumanova. Inverse linear problems for a certain class of degenerate fractional evolution equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 97-111. http://geodesic.mathdoc.fr/item/INTO_2019_167_a8/

[1] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, Prikl. mat. mekh., 24:5 (1960), 852–864 | Zbl

[2] Gerasimov A. N., “Obobschenie lineinykh zakonov deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, Prikl. mat. mekh., 12 (1948), 529–539

[3] Glushak A. V., “Obratnaya zadacha dlya abstraktnogo differentsialnogo uravneniya Eilera—Puassona—Darbu”, Sovr. mat. Fundam. napr., 15 (2006), 126–141

[4] Glushak A. V., “Ob odnoi obratnoi zadache dlya abstraktnogo differentsialnogo uravneniya drobnogo poryadka”, Mat. zametki., 87:5 (2010), 684–693 | DOI | MR | Zbl

[5] Gordievskikh D. M., Fedorov V. E., “Resheniya nachalno-kraevykh zadach dlya nekotorykh vyrozhdennykh sistem uravnenii drobnogo poryadka po vremeni”, Izv. Irkut. gos. un-ta. Ser. mat., 12 (2015), 12–22 | Zbl

[6] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998

[7] Ivanova N. D., Fedorov V. E., Komarova K. M., “Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoi v okrestnosti statsionarnogo resheniya”, Vestn. Chelyabinsk. gos. un-ta. Mat. Mekh. Inform., 26 (280):15 (2012), 49–70

[8] Ikezi Kh., “Eksperimentalnoe issledovanie solitonov v plazme”, Solitony v deistvii, Mir, M., 1981, 163–184

[9] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, GIFML, M., 1961

[10] Plekhanova M. V., Fedorov V. E., Optimalnoe upravlenie vyrozhdennymi raspredelennymi sistemami, Izdat. tsentr YuUrGU, Chelyabinsk, 2013

[11] Prilepko A. I., “Metod polugrupp resheniya obratnykh, nelokalnykh i neklassicheskikh zadach. Prognoz-upravlenie i prognoz-nablyudenie evolyutsionnykh uravnenii. I”, Differ. uravn., 41:11 (2005), 1560–1571 | MR | Zbl

[12] Pyatkov S. G., Samkov M. L., “O nekotorykh klassakh koeffitsientnykh obratnykh zadach dlya parabolicheskikh sistem uravnenii”, Mat. tr., 15:1 (2012), 155–177 | Zbl

[13] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[14] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18 (1954), 3–50 | MR | Zbl

[15] Tikhonov I. V., Eidelman Yu. S., “Voprosy korrektnosti pryamykh i obratnykh zadach dlya evolyutsionnogo uravneniya spetsialnogo vida”, Mat. zametki., 56:2 (1994), 99–113 | Zbl

[16] Tikhonov I. V., Eidelman Yu. S., “Obratnaya zadacha dlya differentsialnogo uravneniya v banakhovom prostranstve i raspredelenie nulei tseloi funktsii tipa Mittag-Lefflera”, Differ. uravn., 38:5 (2002), 637–644 | MR | Zbl

[17] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980

[18] Uizem D., Lineinye i nelineinye volny, Mir, M., 1977

[19] Urazaeva A. V., Fedorov V. E., “Zadachi prognoz-upravleniya dlya nekotorykh sistem uravnenii gidrodinamiki”, Differ. uravn., 44:8 (2008), 1111–1119 | MR | Zbl

[20] Urazaeva A. V., Fedorov V. E., “O korrektnosti zadachi prognoz-upravleniya dlya nekotorykh sistem uravnenii”, Mat. zametki., 85:3 (2009), 440–450 | DOI | MR | Zbl

[21] Falaleev M. V., “Abstraktnaya zadacha prognoz-upravlenie s vyrozhdeniem v banakhovykh prostranstvakh”, Izv. Irkutsk. gos. un-ta. Ser. mat., 3:1 (2010), 126–132 | Zbl

[22] Fedorov V. E., Gordievskikh D. M., “Razreshayuschie operatory vyrozhdennykh evolyutsionnykh uravnenii s drobnoi proizvodnoi po vremeni”, Izv. vuzov. Mat., 2015, no. 1, 71–83 | Zbl

[23] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Uravneniya v banakhovykh prostranstvakh s vyrozhdennym operatorom pod znakom drobnoi proizvodnoi”, Differ. uravn., 51:10 (2015), 1367–1375 | DOI | Zbl

[24] Fedorov V. E., Ivanova N. D., “Nelineinaya evolyutsionnaya obratnaya zadacha dlya nekotorykh uravnenii sobolevskogo tipa”, Sib. elektron. mat. izv., 8 (2011), 363–378

[25] Fedorov V. E., Urazaeva A. V., “Lineinaya evolyutsionnaya obratnaya zadacha dlya uravnenii sobolevskogo tipa”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo In-ta matematiki im. S. L. Soboleva SO RAN, Novosibirsk, 2010, 293–310 | MR

[26] Abasheeva N. L., “Some inverse problems for parabolic equations with changing time direction”, J. Inv. Ill-Posed Probl., 12:4 (2004), 337–348 | DOI | MR | Zbl

[27] Al Horani M., Favini A., “Degenerate first-order inverse problems in Banach spaces”, Nonlin. Anal., l75:1 (2012), 68–77 | DOI | MR | Zbl

[28] Caputo M., “Lineal model of dissipation whose $Q$ is almost frequancy independent. II”, Geophys. J. Astron. Soc., 13 (1967), 529–539 | DOI

[29] Favini A., Lorenzi A., Differential Equations. Inverse and Direct Problems, Chapman and Hall/CRC, New York, 2006 | MR

[30] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1999 | MR | Zbl

[31] Fedorov V. E., Ivanova N. D., “Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel”, Discr. Contin. Dynam. Syst. Ser. S., 9:3 (2016), 687–696 | DOI | MR | Zbl

[32] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fract. Calc. Appl. Anal., 20:3 (2017), 706–721 | DOI | MR | Zbl

[33] Fedorov V. E., Urazaeva A. V., “An inverse problem for linear Sobolev-type equations”, J. Inv. Ill-Posed Probl., 12:4 (2004), 387–395 | DOI | MR | Zbl

[34] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[35] Liu Y., Rundell W., Yamamoto M., “Strong maximum principle for fractional diffusion equations and an application to an inverse source problem”, Fract. Calc. Appl. Anal., 19:4 (2016), 888–906 | DOI | MR | Zbl

[36] Orlovsky D. G., “Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space”, J. Sib. Federal Univ. Math. Phys., 8:1 (2015), 55–63 | DOI | MR

[37] Plekhanova M. V., “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Math. Meth. Appl. Sci., 40 (2016), 41–44 | MR

[38] Prilepko A. I., Orlovskii D. G., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York–Basel, 2000 | MR | Zbl

[39] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003 | MR | Zbl