Strong solution and optimal control problems for a class of fractional linear equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 42-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the unique solvability (in the sense of strong solutions) of the Cauchy problem for a linear inhomogeneous equation in a Banach space solved with respect to the Caputo fractional derivative. We assume that the operator acting on the unknown function in the right-hand side of the equation generates an analytic resolving operator family for the corresponding homogeneous equation. We obtain a representation of a strong solution of the Cauchy problem and examine the solvability of optimal control problems with a convex, lower semicontinuous, lower bounded, coercive functional for the equation considered. The general results obtained are used to prove the existence of an optimal control in problems with specific functionals. Abstract results obtained for a control system described by an equation in a Banach space are illustrated by examples of optimal control problems for a fractional equation whose special cases are the subdiffusion equation and the diffusion wave equation.
Keywords: Caputo fractional derivative, resolving family of operators analytic in a sector, optimal control problem
Mots-clés : fractional evolution equation, subdiffusion equation, diffusionwave equation.
@article{INTO_2019_167_a5,
     author = {M. V. Plekhanova},
     title = {Strong solution and optimal control problems for a class of fractional linear equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {167},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2019_167_a5/}
}
TY  - JOUR
AU  - M. V. Plekhanova
TI  - Strong solution and optimal control problems for a class of fractional linear equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2019
SP  - 42
EP  - 51
VL  - 167
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2019_167_a5/
LA  - ru
ID  - INTO_2019_167_a5
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%T Strong solution and optimal control problems for a class of fractional linear equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2019
%P 42-51
%V 167
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2019_167_a5/
%G ru
%F INTO_2019_167_a5
M. V. Plekhanova. Strong solution and optimal control problems for a class of fractional linear equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the IV International Scientific Conference "Actual Problems of Applied Mathematics". Kabardino-Balkar Republic, Nalchik, Elbrus Region, May 22–26, 2018. Part III, Tome 167 (2019), pp. 42-51. http://geodesic.mathdoc.fr/item/INTO_2019_167_a5/

[1] Iosida K., Funktsionalnyi analiz, Mir, M., 1967

[2] Klement F., Kheimans Kh., Angenent S., van Duin K., de Pakhter B., Odnoparametricheskie polugruppy, Mir, M., 1992 | MR

[3] Kostin V. A., “K teoreme Solomyaka—Iosidy dlya analiticheskikh polugrupp”, Algebra i analiz., 11:1 (1999), 118–140 | Zbl

[4] Plekhanova M. V., “Zadachi optimalnogo upravleniya dlya lineinykh vyrozhdennykh drobnykh uravnenii”, Itogi nauki i tekhn. Sovr. mat. prilozh. Tematich. obzory., 149 (2018), 72–83

[5] Solomyak M. Z., “Primenenie teorii polugrupp k issledovaniyu differentsialnykh uravnenii v prostranstvakh Banakha”, Dokl. AN SSSR., 122:5 (1958), 766–769 | Zbl

[6] Romanova E. A., Fedorov V. E., “Razreshayuschie operatory lineinogo vyrozhdennogo evolyutsionnogo uravneniya s proizvodnoi Kaputo. Sektorialnyi sluchai”, Mat. zametki SVFU., 23:4 (92) (2016), 58–72 | Zbl

[7] Fedorov V. E., Gordievskikh D. M., Plekhanova M. V., “Uravneniya v banakhovykh prostranstvakh s vyrozhdennym operatorom pod znakom drobnoi proizvodnoi”, Differ. uravn., 51:10 (2015), 1367–1375 | DOI | Zbl

[8] Fedorov V. E., Romanova E. A., Debush A., “Analiticheskie v sektore razreshayuschie semeistva operatorov vyrozhdennykh evolyutsionnykh uravnenii drobnogo poryadka”, Sib. zh. chist. prikl. mat., 16:2 (2016), 93–107 | Zbl

[9] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[10] Bajlekova E. G., Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven Univ. of Technology, Eindhoven, 2001 | MR | Zbl

[11] Plekhanova M. V., “Strong solutions to nonlinear degenerate fractional order evolution equations”, J. Math. Sci., 230:1 (2018), 146–158 | DOI | MR

[12] Prüss J., Evolutionary Integral Equations and Applications, Springer, Basel, 1993 | MR